matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikVerteilungsfunktion, Wktdichte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stochastik" - Verteilungsfunktion, Wktdichte
Verteilungsfunktion, Wktdichte < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion, Wktdichte: Übung
Status: (Frage) beantwortet Status 
Datum: 10:25 Mi 25.01.2017
Autor: AragornII

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
F_\alpha(x)=\left\{\begin{matrix}
e^{-x^{-\alpha}}, & \mbox{falls }x\mbox{ >0} \\
0, & \mbox{falls }x\mbox{ kleiner gleich 0 }
\end{matrix}\right.
und $\alpha >0$

i) Zeigen Sie, dass es sich bei $F_\alpha$ für jedes $\alpha>0$ um eine Verteilungsfunktion handelt.

ii) Zeigen Sie, dass die Verteilung aus Teil (i) für jedes $\alpha>0$ eine Wahrscheinlichkeitsdichte besitzt und bestimmen Sie diese.

Hallo eine Frage hätte ich bei Aufgabenteil ii)

Oben ist ja eine Verteilung gegeben. Wenn ich diese Verteilung ableite bekomme ich ja die Wahrscheinlichkeitsdichte heraus oder?

Die Wahrscheinlichkeitsdichte lautet $f_\alpha(x)=\alpha*x^-^{(\alpha+1)}*e^{-x^{-\alpha}$ wäre nur mit der Ableitung (falls es richtig ist) Aufgabenteil ii) gezeigt oder fehlt noch etwas dazu? Irgendwie kommt mir ii) zu leicht vor...

        
Bezug
Verteilungsfunktion, Wktdichte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Mi 25.01.2017
Autor: Diophant

Hallo,


> [mm]F_\alpha(x)=\left\{\begin{matrix} e^{-x^{-\alpha}}, & \mbox{falls }x\mbox{ >0} \\ 0, & \mbox{falls }x\mbox{ kleiner gleich 0 } \end{matrix}\right.[/mm]

>

> und [mm]\alpha >0[/mm]

>

> i) Zeigen Sie, dass es sich bei [mm]F_\alpha[/mm] für jedes
> [mm]\alpha>0[/mm] um eine Verteilungsfunktion handelt.

>

> ii) Zeigen Sie, dass die Verteilung aus Teil (i) für jedes
> [mm]\alpha>0[/mm] eine Wahrscheinlichkeitsdichte besitzt und
> bestimmen Sie diese.
> Hallo eine Frage hätte ich bei Aufgabenteil ii)

>

> Oben ist ja eine Verteilung gegeben.

Na ja, das soll streng genommen in Teil 1 gezeigt werden und dann für den Teil 2 verwendet werden.

> Wenn ich diese
> Verteilung ableite bekomme ich ja die
> Wahrscheinlichkeitsdichte heraus oder?

Ja.

> Die Wahrscheinlichkeitsdichte lautet
> [mm]f_\alpha(x)=\alpha*x^-^{(\alpha+1)}*e^{-x^{-\alpha}[/mm] wäre
> nur mit der Ableitung (falls es richtig ist) Aufgabenteil
> ii) gezeigt oder fehlt noch etwas dazu? Irgendwie kommt mir
> ii) zu leicht vor...

Die Dichtefunktion ist (für x>0!) richtig. und jetzt musst du noch begründen, weshalb dies eine Dichte ist. Ihr Integral von 0 bis [mm] \infty [/mm] kennst du bereits aus Teil 1). Somit muss man (wenn ich nichts übersehe) nur noch zeigen bzw. begründen, weshalb [mm] f_\alpha [/mm] nichtnegativ ist.

EDIT:
Das da oben war der frühen Morgenstunde geschuldet. Wenn klar ist, dass F(x) eine Verteilungsfunktion ist, dann ist die Ableitung eine Dichte, ohne dass zusätzlich etwas gezeigt werden muss.

Danke an luis52 für den Hinweis.


Gruß, Diophant

Bezug
                
Bezug
Verteilungsfunktion, Wktdichte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:41 Mi 25.01.2017
Autor: AragornII

Ok. Vielen Dank :)

Bezug
                
Bezug
Verteilungsfunktion, Wktdichte: Nachtrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Mi 25.01.2017
Autor: Diophant

Hallo nochmals,

durch eine PN von luis52 angeregt habe ich heute Mittag
die obige Antwort nacheditiert (ohne die notwendige Zeit zu haben, weiter darüber nachzudenken).

Die Antwort auf die zweite Frage im Themenstart scheint mir nach reiflicher Überlegung schwierig bis unmöglich bei den gegebenen Informationen.

Wenn wirklich gezeigt wurde, dass [mm] F_{\alpha} [/mm] eine Verteilungsfunktion ist (das schließt den Nachweis der Monotonie ein!), dann ist die Ableitung die zugehörige Dichtefunktion.

Wenn (wovon auszugehen ist), der Monotoniebeweis nicht erbracht wurde, dann muss man für [mm] f_{\alpha} [/mm] eben doch die Nichtnegativität begründen bzw. zeigen.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]