matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische AnalysisVerteilungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "stochastische Analysis" - Verteilungsfunktion
Verteilungsfunktion < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 00:50 Do 05.01.2012
Autor: ella87

Aufgabe
Einem Prüfling werden 40 Fragen, die alle nur mit ja oder nein zu beantworten sind, vorgelegt. Wie viele richtige Antworten müssen zum Bestehen der Prüfung mindestens gefordert werden, damit ein Kandidat durch zufälliges Beantworten höchstens mit einer Wahrscheinlichkeit
von 5% die Prüfung besteht?

ich bin einfach mal davon ausgegangen, dass sich die Verteiung der Wahrscheinlichkeit für die Anzahl der richtigen Antworten symmetrisch in einem Histogramm darstellen lässt.

n=40;  p=0,5
[mm]\mu=20[/mm],[mm]\sigma=\wurzel{10}[/mm]

ich suche die Grenze, sodass 5% der Anzahl richtiger Antworten "rechts davon" liegt.
also gilt wegen der Symmetrie:
[mm]P(20-k \le X \le 20+k)=0,9[/mm]
[mm]\gdw P(19,5-k \le X \le 20,5+k)=0,9[/mm]

[mm]r=0,5+k[/mm] und [mm]r=z * \sigma[/mm]
[mm]\Rightarrow 0,5+k=1,28 * \sigma[/mm]

die 1,28 stammen aus der Tabelle der Verteilungsfunktion, [mm]\Phi(1,28)=0,8997[/mm]

[mm]\Rightarrow k=1,28 * \wurzel{10}-0,5 \approx 3,55[/mm]

Also müsste man die Bestehensgrenze bei 20+3,55, also bei 24 setzen.

Stimmt das? Kommt mir so wenig vor...

        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:24 Do 05.01.2012
Autor: luis52


>  
> n=40;  p=0,5
>  [mm]\mu=20[/mm],[mm]\sigma=\wurzel{10}[/mm]
>  
> ich suche die Grenze, sodass 5% der Anzahl richtiger
> Antworten "rechts davon" liegt.
>  also gilt wegen der Symmetrie:
>  [mm]P(20-k \le X \le 20+k)=0,9[/mm]
>  [mm]\gdw P(19,5-k \le X \le 20,5+k)=0,9[/mm]

[notok] Bestimme $k_$ mit [mm]P(X \le 20,5+k)=0,95[/mm].


vg Luis

Bezug
                
Bezug
Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 08.01.2012
Autor: ella87


>  
> >  

> > n=40;  p=0,5
>  >  [mm]\mu=20[/mm],[mm]\sigma=\wurzel{10}[/mm]
>  >  
> > ich suche die Grenze, sodass 5% der Anzahl richtiger
> > Antworten "rechts davon" liegt.
>  >  also gilt wegen der Symmetrie:
>  >  [mm]P(20-k \le X \le 20+k)=0,9[/mm]
>  >  [mm]\gdw P(19,5-k \le X \le 20,5+k)=0,9[/mm]
>  
> [notok] Bestimme [mm]k_[/mm] mit [mm]P(X \le 20,5+k)=0,95[/mm].
>  
>
> vg Luis

meine Überlegung war quasi die selbe. ich dachte wegen der Symmetrie ginge das auch so.

ich hab folgendes überlegt, weiß nicht ob das korrekt ist:

es gilt:
[mm]P(X\le b)\approx \phi(\bruch{b-\mu}{\sigma})[/mm]
[mm]\phi(\bruch{b-\mu}{\sigma})[/mm] habe ich doch als 0,95 vorgegeben.

Dann kann ich das in der Tabelle nachschauen und komm auf:
[mm]\phi(1,65)=0,9505[/mm]
dann komm ich mit [mm]1,65=\bruch{20,5+k-20}{\wurzel{10}[/mm]
auf [mm]k\approx 4,72[/mm]

also muss die Bestehensgrenze bei 26 Fragen liegen.

stimmt das?

Bezug
                        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 So 08.01.2012
Autor: luis52


>  
> also muss die Bestehensgrenze bei 26 Fragen liegen.
>  
> stimmt das?

[mm] $k=20+4.72\approx25$ [/mm] liefert das bessere Ergebnis.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]