matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieVerteilungsfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - Verteilungsfunktion
Verteilungsfunktion < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Do 17.12.2009
Autor: seamus321

Aufgabe
Sei a>0 und X~ [mm] Exp(\lambda) [/mm]

i) Bestimmen Sie die Verteilungsfunktion von Y:= min {X,a}
ii) Bestimmen Sie EY über die Tranformationsformel für den Erwartungswert.

Hi Leute,

ich sitze jetzt schon seit ner weile an der Aufgabe aber komme einfach nicht auf die Verteilungsfunktion.

erstmal meine Überlegungen dazu: (irgendwie bekomm ich das mit den Formeleditor grad nicht hin also schrei ich die Fälle mal einzeiln)

       0          [mm] y\ge \lambda [/mm]
[mm] F_{Y}(y)= -e^{-\lambda x} [/mm]      . [mm] 0\le [/mm] y [mm] \le [/mm] a (also wenn X=min {X,a})
       ????       [mm] a\le [/mm] y

Mein Problem liegt jetzt auf den dritten Fall zu kommen weil ich ja auch bedenken muss das [mm] F_{Y}(y)=\integral_{- \infty}^{\infty}{f(x) dx} [/mm] =1 sein muss. (mit f als Dichte von Y)

nun ja^^

ii) da hab ich bis jetzt nur die Formel für den Erwartungswert heraus gesucht da ich ja dafür meine Verteilungsfunktion aus i) brauche...

[mm] E(Y)=\integral_{\IR}^{}{y f(y) dy} [/mm]

es wäre super wenn mir jemand auf die Sprünge helfen könnte!

viele Grüße, Seamus

        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Sa 19.12.2009
Autor: luis52

Moin

schau mal hier:

1: @BOOK{Mood74,
2:   title = {Introduction to the Theory of Statistics},
3:   publisher = {Mc-Graw-Hill},
4:   year = {1974},
5:   author = {A. M. Mood and F. A. Graybill and D. C. Boes},
6:   edition = {3.}
7: }          


Seite 63, 69 (Fussnote)

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]