matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikVerteilungsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Verteilungsfunktion
Verteilungsfunktion < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilungsfunktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:51 So 29.01.2006
Autor: hase-hh

Aufgabe
Ein Tetraeder trägt die Zahlen 1,2,3,4. Die Wahrscheinlichkeit für den Eintritt der einzelnen Ereignisse lautet:

P(X=1) = 1/4, P(X=2) = 1/3, P(X=3) = 1/4, P(X=4) = 1/6.

a) Geben Sie die Wahrscheinlichkeit dafür an, dass bei einem viermaligen Wurf eine vierstellige Zahl gezogen wird, die aus lauter verschiedenen Zahlen besteht.

b) Bestimmen Sie den Erwartungswert E(X)

c) Es wird folgendes Glücksspiel angeboten. Der Tetraeder wird jeweils einmal geworfen. Einsatz = 5, Gewinn = 2 mal Würfelwert. Die Gewinnfunktion lautet G = 2X - 5.

c1) Geben Sie ein Strichdiagramm und die Verteilungsfunktion F an.

c2) Bestimmen Sie den durchschnittlichen Gewinn / Verlust. Wann wäre das Spiel fair?


Was ich nicht weiss, wie ich die Verteilungsfunktion bestimmen kann. Und welche Verteilung überhaupt vorliegt?

Zu a)

P = Anzahl der Permutationen (also 4*4*4*4)  mal P(X=1)*P(X=2)*P(X=3)*P(X=4)

also 24 * 1/3 * 1/4 * 1/4 * 1/6.

Zu b)

E(X) = 1/4 *1 + 1/3*2 + 1/4*3 + 1/6*4 = 7/3


Zu c1)

Gut, das Strichdiagramm erhalte ich, wenn ich die Werte von X und die zugeordneten Werte G(X) in ein Diagramm zeichne. Aber was ist mit der Verteilungsfunktion. Es ist ja weder eine Laplace-Verteilung, noch eine Binomialverteilung, noch eine Poisson-Verteilung... :-(   ---> ???

Zu c2)

c2) Bestimmen Sie den durchschnittlichen Gewinn / Verlust. Wann wäre das Spiel fair?

G = 2 E(X) - 5 = - 1/3.

Das Spiel wäre fair bei einem Einsatz von 4 2/3 [€].




Danke für Eure Hilfe!


        
Bezug
Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:08 Mo 30.01.2006
Autor: Julius

Hallo hase-hh!

> Ein Tetraeder trägt die Zahlen 1,2,3,4. Die
> Wahrscheinlichkeit für den Eintritt der einzelnen
> Ereignisse lautet:
>  
> P(X=1) = 1/4, P(X=2) = 1/3, P(X=3) = 1/4, P(X=4) = 1/6.
>  
> a) Geben Sie die Wahrscheinlichkeit dafür an, dass bei
> einem viermaligen Wurf eine vierstellige Zahl gezogen wird,
> die aus lauter verschiedenen Zahlen besteht.
>
> b) Bestimmen Sie den Erwartungswert E(X)
>  
> c) Es wird folgendes Glücksspiel angeboten. Der Tetraeder
> wird jeweils einmal geworfen. Einsatz = 5, Gewinn = 2 mal
> Würfelwert. Die Gewinnfunktion lautet G = 2X - 5.
>  
> c1) Geben Sie ein Strichdiagramm und die
> Verteilungsfunktion F an.
>
> c2) Bestimmen Sie den durchschnittlichen Gewinn / Verlust.
> Wann wäre das Spiel fair?
>
>
> Was ich nicht weiss, wie ich die Verteilungsfunktion
> bestimmen kann. Und welche Verteilung überhaupt vorliegt?
>  
> Zu a)
>  
> P = Anzahl der Permutationen (also 4*4*4*4)

Du meinst hier $4 [mm] \cdot [/mm] 3 [mm] \cdot [/mm] 2 [mm] \cdot [/mm] 1 = 24$.

>  mal
> P(X=1)*P(X=2)*P(X=3)*P(X=4)
>
> also 24 * 1/3 * 1/4 * 1/4 * 1/6.

[ok]

> Zu b)
>  
> E(X) = 1/4 *1 + 1/3*2 + 1/4*3 + 1/6*4 = 7/3

[ok]  

> Zu c1)
>  
> Gut, das Strichdiagramm erhalte ich, wenn ich die Werte von
> X und die zugeordneten Werte G(X) in ein Diagramm zeichne.
> Aber was ist mit der Verteilungsfunktion. Es ist ja weder
> eine Laplace-Verteilung, noch eine Binomialverteilung, noch
> eine Poisson-Verteilung... :-(   ---> ???

Rechne zunächst die Verteilung von $G$ aus. $G$ kann die folgenden vier Werte annehmen: $-3$, $-1$, $1$ und $3$.

Nun gilt etwa_

$P(G=-3) = P(2X-5=-3) = P(2x=2) = P(X=1) = [mm] \frac{1}{4}$ [/mm]

usw.

Nun weißt du, wenn [mm] $F_G$ [/mm] die Verteilungsfunktion von $G$ ist, dass für $x [mm] \in \{-3,-1,1,3\}$ [/mm]

[mm] $F_G(x) [/mm] = P(G [mm] \le [/mm] x) = P(G=-3) + [mm] \ldots [/mm] + P(X=x)$

gilt.

Damit kannst du die Verteilungsfunktion berechnen...
  

> Zu c2)
>
> c2) Bestimmen Sie den durchschnittlichen Gewinn / Verlust.
> Wann wäre das Spiel fair?
>
> G = 2 E(X) - 5 = - 1/3.
>  
> Das Spiel wäre fair bei einem Einsatz von 4 2/3 [€].

[ok]

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]