matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVerteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Verteilung
Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:18 Mo 03.09.2012
Autor: AntonK

Aufgabe
Die erste Reihe im Hörsaal hat n Plätze, auf die sich m ≤ n/2
Personen setzen. Wie groß ist bei rein zufälliger Wahl der Plätze die Wahrscheinlichkeit,
dass keine zwei nebeneinandersitzen? Zählen Sie ab, indem Sie
erst m Personen auf n − m + 1 Plätze setzen und dann m − 1 Plätze ”dazwischenschieben“.
Zur Kontrolle: Die Wahrscheinlichkeit, dass beim Lotto
(6 aus 49) keine zwei benachbarten Zahlen gezogen werden, ist 0.505.

Hallo Leute,

Das Ergebnis für die Aufgabe ist:

[mm] $\bruch{{n-m+1 \choose m}}{{n \choose m}} [/mm]

Den Nenner sehe ich ein, ist logisch, nur habe ich so meine Probleme mit dem Zähler, die Vorgehensweise ist mir klar, als Beispiel:

n=5 und m=2

Nun verteile ich eben die Personen auf n-(m-1) Plätze, also auf 4.

|x||-||x||-|
|x||-||-||x|
|-||x||-||x|

Wenn ich nun überall einen Platz wieder "einschiebe" komme ich auf meine 6 Möglichkeiten, was genau dem Zähler entspricht. Also 4 über 2.

Mir bereitet nun aber das mathematische etwas Kopfschmerzen, warum wird dieses "einschieben" durch n-(m-1)=n-m+1 ausgedrückt? Das leuchtet mir nicht ein.

Bräuchte da mal einen Gedankenanstoß.

Danke schonmal!


        
Bezug
Verteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 05.09.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]