Vertauschen von Quantoren < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | F = [mm] \forall [/mm] x [mm] \exists [/mm] y [mm] \exists [/mm] z (P(x,y) [mm] \vee [/mm] Q(x,z)) [mm] \wedge [/mm] R(f(a,y))
F1 = [mm] \forall [/mm] x [mm] \exists [/mm] z [mm] \exists [/mm] y (P(x,y) [mm] \vee [/mm] Q(x,z)) [mm] \wedge [/mm] R(f(a,y))
F2 = [mm] \exists [/mm] y [mm] \exists [/mm] z [mm] \forall [/mm] x (P(x,y) [mm] \vee [/mm] Q(x,z)) [mm] \wedge [/mm] R(f(a,y))
Gilt F [mm] \equiv [/mm] F1, F [mm] \equiv [/mm] F2? |
Hallo.
Kann mir jemand allgemeingültige Regeln sagen, wann man Quantoren vor einer prädikatenlogischen Formel tauschen darf?
[mm] \exists [/mm] Quantoren kann man im Normalfall ja problemlos tauschen. Aber wie siehts mit dem Tausch von [mm] \forall [/mm] Quantoren aus?
|
|
|
|
Hiho,
generell ist es so, daß du ein Block von [mm] \exists [/mm] beliebig vertauschen kannst, Blöcke von [mm] \forall [/mm] ebenso. Aber die Reihenfolge von [mm] \exists [/mm] und [mm] \forall [/mm] kannst du im Allgemeinen nicht problemlos vertauschen.
Überlegen kannst du es dir an simplen Beispielen:
Was heisst:
[mm]\forall x \exists y[/mm] und
[mm]\exists y \forall x[/mm] ?
MFG,
Gono.
|
|
|
|
|
Danke für die Antwort. Genau das ist ja der Punkt:
Ich wollte wissen, unter welchen Bedingungen ich eine Reihe von Quantoren durchtauschen darf, eingeschlossen des Falles, dass es sich sowohl um [mm] \exists [/mm] und [mm] \forall [/mm] Quantoren handelt.
War wohl etwas unpräzise gestellt. Entschujldigung.
Gruß
|
|
|
|
|
Antwort siehe hier.... verklickt^^
|
|
|
|
|
AAAALSO, wie ich schon angemerkt hab, ist das alles gar net so schwer, dann wollen wir mal:
Oftmals hilft es, sich die Quantoren als Satz vorzustellen und sich dann zu überlegen, ob es das gleiche ist.
Überprüfen wir mal, ob man zwei [mm] \exists [/mm] - Quantoren vertauschen darf, also ob gilt:
1.) [mm] \exists [/mm] x [mm] \exists [/mm] y = [mm] \exists [/mm] y [mm] \exists [/mm] x
oder in Worte:
"Es existiert ein x und es existiert ein y" = "Es existiert ein y und es existiert ein x" ?
2.) [mm] \forall [/mm] x [mm] \forall [/mm] y = [mm] \forall [/mm] y [mm] \forall [/mm] x
in Worte:
"Für alle x und für alle y" = "Für alle y und für alle x" ?
3.) [mm] \forall [/mm] x [mm] \exists [/mm] y = [mm] \exists [/mm] y [mm] \forall [/mm] x
in Worte:
"Für alle x existiert jeweils ein y" = "Es existiert ein y für ALLE x" ??
So, und nun überleg mal zumindest an den Sätzen, ob diese gleich sind oder nicht.
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:53 Fr 01.06.2007 | Autor: | Cosmo2002 |
Hi,
ich glaube, wir reden etwas aneinander vorbei.
Ich bin jetzt selber auf die Lösung gekommen:
Ich kann [mm] \forall [/mm] und [mm] \exists [/mm] Quantoren vertauschen, sofern die Variablen, die zu den Quantoren gehören nicht im gleichen Prädikat vorkommen. Die Reihnefolgen von Quantoren, die im selben Prädikat sind muss gleichbleiben, aber Prädikatweise darf ich sie wild durcheinander schmeißen.
Das kann man an meiner Aufgabe im Eröffnungsbeitrag sehen. F [mm] \equiv [/mm] F1, aber F nicht äquiv. F2.
Aber trotzdem Danke für die Mühe.
|
|
|
|