matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieVerschiedene Fragen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Verschiedene Fragen
Verschiedene Fragen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verschiedene Fragen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Di 13.10.2009
Autor: Leni-H

Hallo!

Ich bin gerade dabei, einen Beweis zu verstehen und habe einige einzelne Fragen, von denen ich hoffe, dass ihr sie beantworten könnt:

1) Wenn ich weiß, dass [mm] c^{\bruch{p-1}{2}} \equiv [/mm] 1 (mod p), wie folgt dann induktiv, dass [mm] c^{\bruch{(p-1)p^{a-1}}{2}} \equiv [/mm] 1 (mod [mm] p^{a})? [/mm]
In dem Beweis steht nur, dass das induktiv leicht folgt, aber ich komm nicht drauf wie und warum!?

2) Wenn ich weiß, dass c quadratischer Rest modulo [mm] 2^{a_{0}} [/mm] und c auch quadratischer Rest modulo [mm] p_{j}^{a_{j}} [/mm] für alle j, wieso gilt dann auch, dass c quadratischer Rest modulo [mm] m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}} [/mm]
Wie kann man das folgern???

Vielen Dank für eure Bemühungen!

LG Leni

        
Bezug
Verschiedene Fragen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Di 13.10.2009
Autor: felixf

Hallo!

> 1) Wenn ich weiß, dass [mm]c^{\bruch{p-1}{2}} \equiv[/mm] 1 (mod
> p), wie folgt dann induktiv, dass
> [mm]c^{\bruch{(p-1)p^{a-1}}{2}} \equiv[/mm] 1 (mod [mm]p^{a})?[/mm]
>  In dem Beweis steht nur, dass das induktiv leicht folgt,
> aber ich komm nicht drauf wie und warum!?

Du machst Induktion nach $a$. Der Anfang mit $a = 1$ ist die Voraussetzung, dir fehlt also der Induktionsschritt.

Du weisst, dass [mm] $c^{(p - 1) p^{a-1}/2} \equiv [/mm] 1 [mm] \pmod{p^a}$ [/mm] ist, also ist [mm] $c^{(p - 1) p^{a-1}/2} [/mm] = 1 + k [mm] p^a \pmod{p^{a+1}}$ [/mm] mit $k [mm] \in \{ 0, \dots, p-1 \}$. [/mm] Jetzt willst du das ganze hoch $p$ nehmen, um zu zeigen, dass [mm] $c^{(p - 1) p^a/2} [/mm] = [mm] (c^{(p - 1) p^{a-1}/2})^p \equiv [/mm] 1 [mm] \pmod{p^{a+1}}$ [/mm] ist.

> 2) Wenn ich weiß, dass c quadratischer Rest modulo
> [mm]2^{a_{0}}[/mm] und c auch quadratischer Rest modulo
> [mm]p_{j}^{a_{j}}[/mm] für alle j, wieso gilt dann auch, dass c
> quadratischer Rest modulo [mm]m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}}[/mm]

Chinesischer Restsatz.

LG Felix


Bezug
                
Bezug
Verschiedene Fragen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Di 13.10.2009
Autor: Leni-H

Vielen Dank erstmal!
>  
> > 1) Wenn ich weiß, dass [mm]c^{\bruch{p-1}{2}} \equiv[/mm] 1 (mod
> > p), wie folgt dann induktiv, dass
> > [mm]c^{\bruch{(p-1)p^{a-1}}{2}} \equiv[/mm] 1 (mod [mm]p^{a})?[/mm]
>  >  In dem Beweis steht nur, dass das induktiv leicht
> folgt,
> > aber ich komm nicht drauf wie und warum!?
>  
> Du machst Induktion nach [mm]a[/mm]. Der Anfang mit [mm]a = 1[/mm] ist die
> Voraussetzung, dir fehlt also der Induktionsschritt.
>  
> Du weisst, dass [mm]c^{(p - 1) p^{a-1}/2} \equiv 1 \pmod{p^a}[/mm]
> ist, also ist [mm]c^{(p - 1) p^{a-1}/2} = 1 + k p^a \pmod{p^{a+1}}[/mm]
> mit [mm]k \in \{ 0, \dots, p-1 \}[/mm]. Jetzt willst du das ganze
> hoch [mm]p[/mm] nehmen, um zu zeigen, dass [mm]c^{(p - 1) p^a/2} = (c^{(p - 1) p^{a-1}/2})^p \equiv 1 \pmod{p^{a+1}}[/mm]
> ist.

Aber wenn ich dann das Ganze hoch p nehme, hab ich ja [mm] (1+kp^{a})^{p}. [/mm] Und wieso ergibt das dann 1?

>  
> > 2) Wenn ich weiß, dass c quadratischer Rest modulo
> > [mm]2^{a_{0}}[/mm] und c auch quadratischer Rest modulo
> > [mm]p_{j}^{a_{j}}[/mm] für alle j, wieso gilt dann auch, dass c
> > quadratischer Rest modulo [mm]m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}}[/mm]
>  
> Chinesischer Restsatz.
>  
> LG Felix
>  


Bezug
                        
Bezug
Verschiedene Fragen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 13.10.2009
Autor: felixf

Hallo!

> > > 1) Wenn ich weiß, dass [mm]c^{\bruch{p-1}{2}} \equiv[/mm] 1 (mod
> > > p), wie folgt dann induktiv, dass
> > > [mm]c^{\bruch{(p-1)p^{a-1}}{2}} \equiv[/mm] 1 (mod [mm]p^{a})?[/mm]
>  >  >  In dem Beweis steht nur, dass das induktiv leicht
> > folgt,
> > > aber ich komm nicht drauf wie und warum!?
>  >  
> > Du machst Induktion nach [mm]a[/mm]. Der Anfang mit [mm]a = 1[/mm] ist die
> > Voraussetzung, dir fehlt also der Induktionsschritt.
>  >  
> > Du weisst, dass [mm]c^{(p - 1) p^{a-1}/2} \equiv 1 \pmod{p^a}[/mm]
> > ist, also ist [mm]c^{(p - 1) p^{a-1}/2} = 1 + k p^a \pmod{p^{a+1}}[/mm]
> > mit [mm]k \in \{ 0, \dots, p-1 \}[/mm]. Jetzt willst du das ganze
> > hoch [mm]p[/mm] nehmen, um zu zeigen, dass [mm]c^{(p - 1) p^a/2} = (c^{(p - 1) p^{a-1}/2})^p \equiv 1 \pmod{p^{a+1}}[/mm]
> > ist.
>  
> Aber wenn ich dann das Ganze hoch p nehme, hab ich ja
> [mm](1+kp^{a})^{p}.[/mm] Und wieso ergibt das dann 1?

Na, es ist doch $(1 + k [mm] p^a)^p [/mm] = [mm] \sum_{i=0}^p \binom{p}{i} k^i p^{i a}$. [/mm] Jetzt schau dir alle Summanden getrennt an. Der erste ist offensichtlich 1. Jetzt ueberleg dir, warum alle anderen durch [mm] $p^{a + 1}$ [/mm] teilbar sind und somit 0 modulo [mm] $p^{a + 1}$ [/mm] sind.

LG Felix


Bezug
                
Bezug
Verschiedene Fragen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Mi 14.10.2009
Autor: Leni-H

Hi!

Ich habe nochmal eine kleine Frage zu 2):

>  
> > 1) Wenn ich weiß, dass [mm]c^{\bruch{p-1}{2}} \equiv[/mm] 1 (mod
> > p), wie folgt dann induktiv, dass
> > [mm]c^{\bruch{(p-1)p^{a-1}}{2}} \equiv[/mm] 1 (mod [mm]p^{a})?[/mm]
>  >  In dem Beweis steht nur, dass das induktiv leicht
> folgt,
> > aber ich komm nicht drauf wie und warum!?
>  
> Du machst Induktion nach [mm]a[/mm]. Der Anfang mit [mm]a = 1[/mm] ist die
> Voraussetzung, dir fehlt also der Induktionsschritt.
>  
> Du weisst, dass [mm]c^{(p - 1) p^{a-1}/2} \equiv 1 \pmod{p^a}[/mm]
> ist, also ist [mm]c^{(p - 1) p^{a-1}/2} = 1 + k p^a \pmod{p^{a+1}}[/mm]
> mit [mm]k \in \{ 0, \dots, p-1 \}[/mm]. Jetzt willst du das ganze
> hoch [mm]p[/mm] nehmen, um zu zeigen, dass [mm]c^{(p - 1) p^a/2} = (c^{(p - 1) p^{a-1}/2})^p \equiv 1 \pmod{p^{a+1}}[/mm]
> ist.
>  
> > 2) Wenn ich weiß, dass c quadratischer Rest modulo
> > [mm]2^{a_{0}}[/mm] und c auch quadratischer Rest modulo
> > [mm]p_{j}^{a_{j}}[/mm] für alle j, wieso gilt dann auch, dass c
> > quadratischer Rest modulo [mm]m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}}[/mm]
>  
> Chinesischer Restsatz.

Wie folgt das genau mit dem Chinesischen Restsatz?? Kann ich das folgendermaßen begründen: c ist ein Quadrat im Ring [mm] \IZ|m\IZ, [/mm] weil c ein Quadrat in den Ringen [mm] \IZ|2^{a_{0}}\IZ, \IZ|p_{j}\IZ [/mm] für alle j ist und es einen Isomorphismus von [mm] \IZ|2^{a_{0}}\IZ [/mm] x [mm] \IZ|p_{1}\IZ [/mm] x [mm] \IZ|p_{2}\IZ [/mm] x .... nach [mm] \IZ|m\IZ [/mm] gibt?
Oder wie genau kann man das mit dem Chinesischen Restsatz begründen?

Danke!

LG Leni

>  
> LG Felix
>  


Bezug
                        
Bezug
Verschiedene Fragen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:05 Do 15.10.2009
Autor: felixf

Hallo!

> > > 2) Wenn ich weiß, dass c quadratischer Rest modulo
> > > [mm]2^{a_{0}}[/mm] und c auch quadratischer Rest modulo
> > > [mm]p_{j}^{a_{j}}[/mm] für alle j, wieso gilt dann auch, dass c
> > > quadratischer Rest modulo [mm]m=2^{a_{0}} \produkt_{p_{j}}^{}p_{j}^{a_{j}}[/mm]
> >  

> > Chinesischer Restsatz.
>  
> Wie folgt das genau mit dem Chinesischen Restsatz?? Kann
> ich das folgendermaßen begründen: c ist ein Quadrat im
> Ring [mm]\IZ|m\IZ,[/mm] weil c ein Quadrat in den Ringen
> [mm]\IZ|2^{a_{0}}\IZ, \IZ|p_{j}\IZ[/mm] für alle j ist und es einen
> Isomorphismus von [mm]\IZ|2^{a_{0}}\IZ[/mm] x [mm]\IZ|p_{1}\IZ[/mm] x
> [mm]\IZ|p_{2}\IZ[/mm] x .... nach [mm]\IZ|m\IZ[/mm] gibt?
>  Oder wie genau kann man das mit dem Chinesischen Restsatz
> begründen?

Fast. Wenn du [mm] $p_1, p_2, \dots$ [/mm] jetzt noch durch [mm] $p_1^{a_1}, p_2^{a_2}, \dots$ [/mm] ersetzt, dann stimmt es.

(Modulo wird uebrigens als / und nicht | geschrieben.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]