matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesVerknüpfungstabelle Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Verknüpfungstabelle Gruppe
Verknüpfungstabelle Gruppe < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfungstabelle Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 So 29.03.2009
Autor: Klemme

Aufgabe
Geben Sie die Verknüpfungstabelle für die Gruppe [mm] S_{3} [/mm] = S({1,2,3}) an! Wie lauten die Untergruppen von [mm] S_{3}? [/mm]

Hallo,

hier meine (Teil)lösung zu obiger Aufgabe. Kann das bitte mal jemand kurz durchsehen?

Wie kann ich jetzt hier die Untergruppen rauslesen? Ich weiß dass das neutrale Element aus [mm] S_{3} [/mm] in diesen Untergruppen enthalten sein muss. Ist das neutrale Element jetzt die identische Abbildung?

Lösung:
id: [mm] \begin{Vmatrix} 1 & 2 & 3\\1 & 2 & 3\end{Vmatrix}\tau_{12}: \begin{Vmatrix} 1 & 2 & 3\\2 & 1 & 3\end{Vmatrix}\tau_{13}: \begin{Vmatrix} 1 & 2 & 3\\3 & 2 & 1\end{Vmatrix}\tau_{23}: \begin{Vmatrix} 1 & 2 & 3\\1 & 3 & 2\end{Vmatrix}\sigma:\begin{Vmatrix} 1 & 2 & 3\\2 & 3 & 1\end{Vmatrix}\rho:\begin{Vmatrix} 1 & 2 & 3\\3 & 1 & 2\end{Vmatrix} [/mm]

gesamte Tabelle:
[mm] \begin{Vmatrix} & id & \tau_{12} & \tau_{13} & \tau_{23} &\sigma & \rho \\ id & id & \tau_{12} & \tau_{13} & \tau_{23} & \sigma & \rho \\ \tau_{12} & \tau_{12} & id & \rho & \sigma & \tau_{23} & \tau_{13} \\ \tau_{13} & \tau_{13} &\sigma & id & \rho & \tau_{12} & \tau_{23} \\ \tau_{23} & \tau_{23} & \rho & \sigma & id & \tau_{13} & \tau_{12} \\ \sigma & \sigma & \tau_{13} & \tau_{23} &\tau_{12} & \rho & id \\ \rho & \rho & \tau_{23} & \tau_{12}&\tau_{13} & id & \sigma \end{Vmatrix} [/mm]

Danke schon mal.

LG

Klemme

        
Bezug
Verknüpfungstabelle Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 So 29.03.2009
Autor: angela.h.b.


> Geben Sie die Verknüpfungstabelle für die Gruppe [mm]S_{3}[/mm] =
> S({1,2,3}) an! Wie lauten die Untergruppen von [mm]S_{3}?[/mm]
>  Hallo,
>  
> hier meine (Teil)lösung zu obiger Aufgabe. Kann das bitte
> mal jemand kurz durchsehen?
>  
> Wie kann ich jetzt hier die Untergruppen rauslesen? Ich
> weiß dass das neutrale Element aus [mm]S_{3}[/mm] in diesen
> Untergruppen enthalten sein muss. Ist das neutrale Element
> jetzt die identische Abbildung?
>  
> Lösung:
>  id: [mm]\begin{Vmatrix} 1 & 2 & 3\\1 & 2 & 3\end{Vmatrix}\tau_{12}: \begin{Vmatrix} 1 & 2 & 3\\2 & 1 & 3\end{Vmatrix}\tau_{13}: \begin{Vmatrix} 1 & 2 & 3\\3 & 2 & 1\end{Vmatrix}\tau_{23}: \begin{Vmatrix} 1 & 2 & 3\\1 & 3 & 2\end{Vmatrix}\sigma:\begin{Vmatrix} 1 & 2 & 3\\2 & 3 & 1\end{Vmatrix}\rho:\begin{Vmatrix} 1 & 2 & 3\\3 & 1 & 2\end{Vmatrix}[/mm]
>  
> gesamte Tabelle:
>  [mm]\begin{Vmatrix} & id & \tau_{12} & \tau_{13} & \tau_{23} &\sigma & \rho \\ id & id & \tau_{12} & \tau_{13} & \tau_{23} & \sigma & \rho \\ \tau_{12} & \tau_{12} & id & \rho & \sigma & \tau_{23} & \tau_{13} \\ \tau_{13} & \tau_{13} &\sigma & id & \rho & \tau_{12} & \tau_{23} \\ \tau_{23} & \tau_{23} & \rho & \sigma & id & \tau_{13} & \tau_{12} \\ \sigma & \sigma & \tau_{13} & \tau_{23} &\tau_{12} & \rho & id \\ \rho & \rho & \tau_{23} & \tau_{12}&\tau_{13} & id & \sigma \end{Vmatrix}[/mm]

Hallo,

grob drübergeschaut sieht Deine Tabelle richtig aus.

Wie Du vermutst, ist die identische Abbildung das neutrale Element. Damit hast Du auch schon eine  einelementige Untergruppe gefunden. Auch die 6-elementige Untergruppe sollte klar sein.

Ich weiß nun nicht, was Du so alles weißt. jedenfalls brauchst Du nach Untergruppen mit 4 oder 5 Elementen gar nicht zu suchen. (Satz v. Lagrange)

Den anderen Untergruppen kommst Du vielleicht bequemer auf die Spur, wenn Du Dir [mm] S_3 [/mm] geometrisch vorstellst: als Kongruenzabbildungen des gleichseitigen Dreiecks.
Deine [mm] \tau [/mm] entsprechen den drei Spiegelungen, [mm] \sigma [/mm] und [mm] \rho [/mm] den Drehungen um 120° bzw. 240°.

Gruß v. Angela









Bezug
                
Bezug
Verknüpfungstabelle Gruppe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 So 29.03.2009
Autor: Klemme

Gut. Danke für die schnelle Antwort. Ich spar mir das jetzt mal die anderen Untergruppen aufzuschreiben

LG

Klemme

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]