matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperVerknüpfungen und Körperaxiome
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Verknüpfungen und Körperaxiome
Verknüpfungen und Körperaxiome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verknüpfungen und Körperaxiome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:23 Fr 19.10.2007
Autor: vroun

Aufgabe
Prüfen sie, ob die Menge IR x IR zusammen mit den durch
(a,b) [mm] \oplus [/mm] (c,d) := (a+c, b+d)
und
(a,b) [mm] \odot [/mm] (c,d) := (ac, bd)
erklärten Verknüpfungen [mm] \oplus [/mm] und [mm] \odot [/mm] ein Körper ist. Welche Körperaxiome gelten, welche sind verletzt?

Hallo zusammen!
Ich bin neu hier und im ersten Semester für Lehramt Realschule!
Ich habe diese Übungsaufgabe bekommen und stecke nun bei dem neutralen und inversen elementen fest!
Hoffentlich kann mir jemand helfen!!!
DANKE!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Verknüpfungen und Körperaxiome: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Fr 19.10.2007
Autor: angela.h.b.


> Prüfen sie, ob die Menge IR x IR zusammen mit den durch
>  (a,b) [mm]\oplus[/mm] (c,d) := (a+c, b+d)
>  und
>  (a,b) [mm]\odot[/mm] (c,d) := (ac, bd)
>  erklärten Verknüpfungen [mm]\oplus[/mm] und [mm]\odot[/mm] ein Körper ist.
> Welche Körperaxiome gelten, welche sind verletzt?
>  Hallo zusammen!
>  Ich bin neu hier und im ersten Semester für Lehramt
> Realschule!

Hallo,

[willkommenmr].

Wenn Du wissen willst, ob es ein neutrales [mm] (n_1,n_2) [/mm] Element bzgl. [mm] \oplus [/mm] gibt, mußt Du prüfen, ob Du ein [mm] (n_1,n_2) \in \IR [/mm] x [mm] \IR [/mm] findest (also [mm] n_1,n_2 \in \IR) [/mm] so,

daß für alle [mm] (a,b)\in \IR [/mm] x [mm] \IR [/mm] gilt

(a,b) [mm]\oplus[/mm] [mm] (n_1,n_2) [/mm] := (a, b)

[mm] <==>(a+n_1, b+n_2)=(a,b). [/mm]

Nun besinn Dich, wann zwei Zahlenpaare gleich sind und berechne [mm] n_1 [/mm] und [mm] n_2. [/mm]

Was Du bisher getan hast, kannst Du auf einem geheimen Schmierzettel tun.

Für die Übung schreibst Du dann: es ist (...,...) das neutrale Elemnt bzgl. [mm] \oplus, [/mm] denn es ist für alle [mm] (a,b)\in \IR [/mm] x [mm] \IR [/mm]

(a,b) [mm]\oplus[/mm] (...,...)= ... =(a,b).

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]