matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungVerhalten für x --> unendlich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Verhalten für x --> unendlich
Verhalten für x --> unendlich < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verhalten für x --> unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 So 18.01.2009
Autor: Ve123

Aufgabe
[mm] \bruch{3^x}{1-2^x} [/mm]  

Als Lösung wird [mm] \{f(x) \to \ - infty} [/mm]   angeben.

Ich hab versucht mir das logisch zu erschließen, komme aber nicht drauf:
Wenn x gegen unendlich geht müsste doch der Zähler unendlich groß werden, und im Nenner müsste dann doch auch eine hohe negative Zahl herauskommen. Wenn man zwei unendlich große Zahlen teilt, kann doch nicht " - unendlich " herauskommen oder?

        
Bezug
Verhalten für x --> unendlich: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 So 18.01.2009
Autor: MontBlanc

Hi,
> [mm]\bruch{3^x}{1-2^x}[/mm]  
> Als Lösung wird [mm]\{f(x) \to \ - infty}[/mm]   angeben.
>  
> Ich hab versucht mir das logisch zu erschließen, komme aber
> nicht drauf:
>  Wenn x gegen unendlich geht müsste doch der Zähler
> unendlich groß werden, und im Nenner müsste dann doch auch
> eine hohe negative Zahl herauskommen. Wenn man zwei
> unendlich große Zahlen teilt, kann doch nicht " - unendlich
> " herauskommen oder?

doch, kann es schon. Den Unterschied macht hier die 3 im Zähler und die 2 im Nenner. Das wird schon deutlich, wenn du für x mal 10 oder 15 einsetzt:

[mm] 3^{10}=59049 [/mm]

[mm] 2^{10}=1024 [/mm]

schon hier hast du einen quotienten von [mm] \approx59. [/mm] Und das sind noch kleine x-werte, nun stell dir vor die setzt etwas ein wie [mm] 10^{20} [/mm] oder [mm] 10^{30}, [/mm] der quotient wird immer größer. da du aber im Nenner von 1 abziehst, teilst du durch eine negative zahl. Daher ist [mm] -\infty [/mm] schon richtig.

lg

Bezug
        
Bezug
Verhalten für x --> unendlich: Hinweis
Status: (Antwort) fertig Status 
Datum: 17:14 So 18.01.2009
Autor: Loddar

Hallo Ve!


Klammere in Zähler und Nenner jeweils [mm] $2^x$ [/mm] aus und kürze anschließend.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]