matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreVereinigung Beweis Produkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Vereinigung Beweis Produkt
Vereinigung Beweis Produkt < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinigung Beweis Produkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:34 Fr 04.01.2013
Autor: Masseltof

Aufgabe
A, B, A', B' seien Mengen.
Untersuchen Sie, welcher der Formel:
1. (A X B) [mm] \cap [/mm] (A' X B')= (A [mm] \cap [/mm] A') X (B [mm] \cap [/mm] B')
2. (A X B) [mm] \cup [/mm] (A' X B')= (A [mm] \cup [/mm] A') X (B [mm] \cup [/mm] B')

allgemein richtig sind.

Hallo.

Für obige Aufgabe habe ich folgenden Ansatz getroffen.
[mm] \{A, A', B, B'\} \subset [/mm] X
1. M:= (A X B) [mm] \cap [/mm] (A' X B')= (A [mm] \cap [/mm] A') X (B [mm] \cap [/mm] B') [mm] \gdw \{(a,b) \in X^{2}: a \in A, b \in B\} \cap \{(a,b) \in X^{2}: a \in A', b \in B'\} \gdw \{(a,b) \in X^{2}: (a \in A , b \in B) \wedge (a \in A' , b \in B')\} \rightarrow \neg \exists [/mm] (a,b) [mm] \in [/mm] M: (a [mm] \notin [/mm] A [mm] \wedge a\notin [/mm] A'), (b [mm] \notin [/mm] B [mm] \wedge [/mm] b [mm] \notin [/mm] B')   [mm] \gdw \forall [/mm] (a,b) [mm] \in [/mm] M: a [mm] \in (A\wedge [/mm] A'), b [mm] \in [/mm] (B [mm] \wedge [/mm] B') [mm] \Rightarrow [/mm] M:= [mm] \{(a,b) \in X^{2}: a \in (A \capA') , b \in( B\cap B')\} \gdw [/mm] (A [mm] \cap [/mm] A') X (B [mm] \cap [/mm] B')

Ich bin mir nicht sicher, ob die Formulierungen so richtig sind.

2. Hier könnte ich einfach ein Bsp. einführen, dass zeigt das dies nicht wahr ist.
Man sieht das ja im Prinzip direkt.
Und nach einem Beweis für die Nichtrichtigkeit wird nicht gefragt.


Grüße

        
Bezug
Vereinigung Beweis Produkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 So 06.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]