matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Vereinfachen von Brüchen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Vereinfachen von Brüchen
Vereinfachen von Brüchen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachen von Brüchen: Idee
Status: (Frage) beantwortet Status 
Datum: 08:27 Mo 18.09.2006
Autor: stefan67

</task>
Vereifachen sie den Bruch durch ausklammern und kürzen, mein Ergebniss [mm] lautet:\frac{3}{17} [/mm] oder 20 komme immer auf verschiedene Ergebnisse

[mm] \frac{16a^4-81}{8a^3-12a^2+18a-27} [/mm] =?

        
Bezug
Vereinfachen von Brüchen: Tipp
Status: (Antwort) fertig Status 
Datum: 08:47 Mo 18.09.2006
Autor: Sigrid

Hallo Stefan,

>
> Vereifachen sie den Bruch durch ausklammern und kürzen,
> mein Ergebniss [mm]lautet:\frac{3}{17}[/mm] oder 20 komme immer auf
> verschiedene Ergebnisse

Da ist mir nicht klar, was du gemacht hast.

>  
> [mm]\frac{16a^4-81}{8a^3-12a^2+18a-27}[/mm] =?

Den Zähler kannst du mit Hilfe der 3. binomischen Formel  faktorisieren.

Beim Nenner nenne ich dir den ersten Schritt:

$ [mm] 8a^3-12a^2+18a-27 [/mm] = 4 [mm] a^2\ [/mm] (2 a - 3) + 9 ( 2 a - 3) $

Kommst du jetzt alleine weiter?

Gruß
Sigrid

Bezug
                
Bezug
Vereinfachen von Brüchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:30 Mo 18.09.2006
Autor: stefan67

ich habe da dann irgendwann stehen

[mm] \frac{(4a^2+9)*(4a^2-9)}{4a^2(2a-3)+9(2a-3)} [/mm]

[mm] \frac{(2a-3)*(2a+3)}{4a^2+9} [/mm]

[mm] \frac{4a^2-9}{4a^2+9} [/mm] =-1

Bezug
                        
Bezug
Vereinfachen von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Mo 18.09.2006
Autor: Karl_Pech

Hallo stefan67,


Der Übergang von diesem ...


> [mm]\frac{(4a^2+9)\cdot{}(4a^2-9)}{4a^2(2a-3)+9(2a-3)}[/mm]


zu diesem Bruch


> [mm]\frac{(2a-3)\cdot{}(2a+3)}{4a^2+9}[/mm]


ist mir nicht ganz klar. Ich finde, da ist bei dir im Zähler [mm]\left((2a)^2+3^2\right)[/mm] verlorengegangen. Und wie kommt es, daß bei diesem Teil der Umformung bei dir im Zähler immer noch [mm](2a-3)[/mm] steht? Wenn du schon im Nenner [mm]4a^2+9[/mm] stehen hast, müßtest du 2a-3 vorher gekürzt haben.



Viele Grüße
Karl





Bezug
                        
Bezug
Vereinfachen von Brüchen: so geht's
Status: (Antwort) fertig Status 
Datum: 11:30 Mo 18.09.2006
Autor: informix

Hallo Stefan,

> ich habe da dann irgendwann stehen
>
> [mm]\frac{(4a^2+9)*(4a^2-9)}{4a^2(2a-3)+9(2a-3)}[/mm]

$= [mm] \frac{(4a^2+9)*(2a+3)*(2a-3)}{(2a-3)(4a^2+9)}$ [/mm]

$= [mm] \frac{(2a+3)}{1} [/mm] = (2a+3)$

>
> [mm]\frac{(2a-3)*(2a+3)}{4a^2+9}[/mm]  [notok]
> [mm]\frac{4a^2-9}{4a^2+9}[/mm] =-1 noch weniger ok! ;-)

Jetzt klar(er)?

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]