matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorunterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorunterräume
Vektorunterräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorunterräume: Beweis
Status: (Frage) beantwortet Status 
Datum: 01:01 Do 05.11.2009
Autor: Arisen89

Aufgabe
Seien U1 und U2 zwei Unterräume eines reellen Vektorraumes V.
(a) Beweisen Sie, dass der Durschnitt von U1 und U2 auch ein Unterraum von V ist.  

Ich weiss, dass man die 2 axiomen von Unterräumen beweisen soll. Aber jetzt weiss ich nicht wo ich anfangen soll. Eigentlich habe ich versucht v=v1+v2 [mm] \in [/mm] U1 und w=w1+w2 [mm] \in [/mm] U2 und dann :

(v1+v2) + (w1+w2) = (v1+w1) + (v2+w2) dann weiss es nicht :( Hilfe bitte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorunterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 05:30 Do 05.11.2009
Autor: angela.h.b.


> Seien U1 und U2 zwei Unterräume eines reellen Vektorraumes
> V.
>  (a) Beweisen Sie, dass der Durschnitt von U1 und U2 auch
> ein Unterraum von V ist.

> Ich weiss, dass man die 2 axiomen von Unterräumen beweisen
> soll.

Hallo,

Du meinst die Unterraumkriterien.
Das sind drei und nicht zwei: es gehört noch dazu, daß [mm] U\not=\emptyset [/mm] - und das ist wichtig.


> Aber jetzt weiss ich nicht wo ich anfangen soll.

Kühlen Kopf bewähren.

Zu zeigen ist hier also:

1. [mm] U_1\cap U_2\not=\emptyset [/mm]

2. [mm] v_1, v_2\in U_1\cap U_2 [/mm]  ==> [mm] v_1+v_2\in U_1\cap U_2 [/mm]

3. [mm] v\in U_1\cap U_2, \lambda\in \IR [/mm] ==> [mm] \lambda [/mm] v [mm] \in U_1\cap U_2 [/mm]


Nun mal zu den Voraussetzungen:
es ist vorausgesetzt, daß [mm] U_1 [/mm] und [mm] U_2 [/mm] Unterräume von V sind.

also gilt (i=1,2)

          1. [mm] U_i\not=\emptyset [/mm]

          2. [mm] v_1, v_2\in U_i [/mm]  ==> [mm] v_1+v_2\in U_i [/mm]

          3. [mm] v\in U_i, \lambda\in \IR [/mm] ==> [mm] \lambda [/mm] v [mm] \in U_i [/mm]


Jetzt kommt der Beweis:

zu1:  [mm] U_1 [/mm] und [mm] U_2 [/mm] sind nach Voraussetzung Unterräume, also Vektorräume. Welches Element ist in jedem VR enthalten?
Folglich ist es auch im Schnitt.

zu 2.  Seien [mm] v_1, v_2\in U_1\cap U_2. [/mm]
Nun muß man sich mal überlegen, was es bedeutet, daß die im Schnitt liegen:

==> [mm] v_1, v_2\in U_1 [/mm]  und [mm] v_1, v_2\in U_2 [/mm]

==> inwelchen Räumen liegt weshalb die Summe?

==> bedenke hier, was "Durchschnitt" bedeutet

zu 3.  Das geht sehr ähnlich.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]