matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Vektorrechnung
Vektorrechnung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung: Beweisführung
Status: (Frage) beantwortet Status 
Datum: 20:08 So 04.09.2005
Autor: stevarino

Hallo

Hab folgende Aufgabe:
Zeige sie dass beliebige -vektoren a,b aus dem R3 stets (axb)*a=0 und (axb)*b=0 gilt.
Ich habs so probiert:
[mm] a=(a_{x};a_{y};a_{z}) b=(b_{x};b_{y};b_{z}) [/mm]

[mm] axb=(a_{y}b_{z}-a_{z}b_{y};a_{z}b_{x}-a_{x}b_{z};a_{x}b_{y}-a_{y}b_{x}) [/mm]

dann mit Vektor a skalar multipliziert

[mm] (axb)*=(a_{x}a_{y}b_{z}-a_{x}a_{z}b_{y};a_{y}a_{z}b_{x}-a_{y}a_{x}b_{z};a_{z}a_{x}b_{y}-a_{z}a_{y}b_{x}) [/mm]

jetzt hätte ich mir gedacht das sich was rauskürzt wenn man den Betrag ausrechnet tut sich aber nicht.

Meine 2 Variante wäre ähnlich nur mit der Änderung das ich den Vektor axb   als rechtwinklig auf a und b ist und wenn man jetzt in die Formel
(axb)*a=|axb|*|a|*cosphi  un da cos 90° =0 ist stimmts

Welcher Weg ist der Richtige???

danke Stevo

        
Bezug
Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 So 04.09.2005
Autor: Toellner


> Hallo
>  
> Hab folgende Aufgabe:
>  Zeige sie dass beliebige -vektoren a,b aus dem R3 stets
> (axb)*a=0 und (axb)*b=0 gilt.
>  Ich habs so probiert:
>  [mm]a=(a_{x};a_{y};a_{z}) b=(b_{x};b_{y};b_{z})[/mm]
>  
> [mm]axb=(a_{y}b_{z}-a_{z}b_{y};a_{z}b_{x}-a_{x}b_{z};a_{x}b_{y}-a_{y}b_{x})[/mm]
>  
> dann mit Vektor a skalar multipliziert

das ist der falsche Begriff, Du musst das Skalarprodukt bestimmen und das sieht abweichend von Deiner Version so aus:  
[mm](axb)*a=a_{x}a_{y}b_{z}-a_{x}a_{z}b_{y}+a_{y}a_{z}b_{x}-a_{y}a_{x}b_{z}+a_{z}a_{x}b_{y}-a_{z}a_{y}b_{x} = 0[/mm]
Wenn Du Dir das genau ansiehst, dann heben sich die Terme wechselseitig weg, z.B. [mm] a_{x}a_{y}b_{z} [/mm] im 1. Summanden und [mm] -a_{y}a_{x}b_{z} [/mm] im 2. Summanden, etc.

> Meine 2 Variante wäre ähnlich nur mit der Änderung das ich
> den Vektor axb   als rechtwinklig auf a und b ist und wenn
> man jetzt in die Formel
> (axb)*a=|axb|*|a|*cosphi  un da cos 90° =0 ist stimmts
>

Beide.

>  
> danke Stevo


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]