matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungVektorrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Vektorrechnung
Vektorrechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 29.03.2008
Autor: ever

Aufgabe
Das Parallelogramm ABCD mit A(3/1/4), B(6/4/7), C(5/3/10) ist die Grundfläche einer geraden Pyramide mit der Höhe h=10xdie Wurzel aus2.
Berechne die Koordinaten der Pyramidenspitze.

Wie kommt man auf die Lösungen?

2 Lösungen sind richtig: S1(14/-8/7) und S2(-6/12/7).

Das einzige was ich ausgerechnet hab ist D(2/0/7) sowie das Kreuzprodukt vom Vektor a und b =(12/-12/0).
Hab zwei A4-Seiten vollgeschrieben mit Lösungsversuchen aber die sind alle komplett falsch, deswegen kann ich auch keine Lösungsansätze schreiben....

Bitte helft mir, ich habe mehrere ähnliche Beispiele mit gleichem Rechenschema und komme einfach nicht dahinter..

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?postid=707661#post707661
http://www.onlinemathe.de/forum/Vektorrechnung-45

        
Bezug
Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Sa 29.03.2008
Autor: MathePower

Hallo ever,

[willkommenmr]

> Das Parallelogramm ABCD mit A(3/1/4), B(6/4/7), C(5/3/10)
> ist die Grundfläche einer geraden Pyramide mit der Höhe
> h=10xdie Wurzel aus2.

[mm]h=10\wurzel{2}[/mm]

> Berechne die Koordinaten der Pyramidenspitze.


Ist das die vollständige Aufgabenstellung?


>  Wie kommt man auf die Lösungen?
>  
> 2 Lösungen sind richtig: S1(14/-8/7) und S2(-6/12/7).
>
> Das einzige was ich ausgerechnet hab ist D(2/0/7) sowie das
> Kreuzprodukt vom Vektor a und b =(12/-12/0).

Ok. [mm]\pmat{-12 \\ 12 \\ 0}=12*\pmat{-1 \\ 1 \\ 0}[/mm]

Eine gerade Pyramide heisst ja, dass man eine Gerade mit dem Normalenvektor als Richtungsvektor bilden muss.

Suche also Punkte P, die  von der Ebene, die durch Punkte A, B, C geht, den Abstand h haben.

[mm]E:\overrrightarow{x}=\overrightarrow{OA}+s*\overrightarrow{AB}+t*\overrightarrow{AC}[/mm]

bzw.

[mm]E:\left(\overrightarrow{x}-\overrightarrow{OA}\right) \* \left(\overrightarrow{AB} \times \overrightarrow{AC}\right)=0[/mm]

und die Gerade g:

[mm]g:\overrightarrow{x}=\overrightarrow{OP}+u*\left(\overrightarrow{AB} \times \overrightarrow{AC}\right)[/mm]

Schneide diese Gerade g mit der Ebene E.

Für den Abstand dieser Punkte P zur Ebene E gilt:

[mm]\vmat{\overrightarrow{OP}-\overrightarrow{OA}}=\vmat{u*\left(\overrightarrow{AB} \times \overrightarrow{AC}\right)}=h[/mm]

Das heisst, die Punkte P, die von der Ebene E den Abstand h haben, liegen in einer parallelen Ebene zu E.

Daher wird eine zusätzliche Bedingung benötigt um die Punkte P genauer festzulegen.


>  Hab zwei A4-Seiten vollgeschrieben mit Lösungsversuchen
> aber die sind alle komplett falsch, deswegen kann ich auch
> keine Lösungsansätze schreiben....
>
> Bitte helft mir, ich habe mehrere ähnliche Beispiele mit
> gleichem Rechenschema und komme einfach nicht dahinter..
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> http://www.matheboard.de/thread.php?postid=707661#post707661
>  http://www.onlinemathe.de/forum/Vektorrechnung-45

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]