Vektorraum mit Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:12 Fr 30.11.2007 | Autor: | lauser |
Aufgabe | Sei V ein Vektorraum und [mm] \{b_1,..., b_n\} [/mm] mit n [mm] \in \IN [/mm] \ {1} eine Basis von V . Prüfen Sie, wann [mm] \{b_1 + b_2, b_2 + b_3, . . . , b_{n-1} + b_n, b_n + b_1\} [/mm] eine Basis von V ist. |
Hallo ihr da
Ich habe angefangen, diese Aufgabe zu lösen und wollte fragen, ob das so einigermaßen stimmt.
Ich habe bereits eine Basis von V, nämlich die Vektoren [mm] \{b_1,..., b_n\}.
[/mm]
D.h. es ist:
[mm] k_1 b_1 [/mm] + ... + [mm] k_n b_n [/mm] = 0 => [mm] k_1 [/mm] = ... = [mm] k_n [/mm] = 0.
Ich betrachte nun die [mm] \{b_1 + b_2, b_2 + b_3, . . . , b_{n-1} + b_n, b_n + b_1\}. [/mm] Das ist eine Basis, falls die Vektoren V erzeugen und linear unabhängig sind.
[mm] (b_1 [/mm] + [mm] b_2) k_1 [/mm] + [mm] (b_2 [/mm] + [mm] b_3) k_2 [/mm] + ... + [mm] k_{n-1} (b_{n-1} [/mm] + [mm] b_n) [/mm] + [mm] k_n (b_n [/mm] + [mm] b_1) [/mm] = 0
Das wäre doch dann der Fall, wenn [mm] b_{i} [/mm] = - [mm] b_{i+1}, [/mm] aber dann wären die Vektoren [mm] b_i [/mm] doch schon linear abhängig gewesen. Das heißt, das ist schon mal nicht möglich, da die Vektoren ja eine Basis sind.
Aber ich kann das oben ja "umsortieren":
[mm] (k_1 [/mm] + [mm] k_n) b_1 [/mm] + [mm] (k_1 [/mm] + [mm] k_2) b_2 [/mm] + ... [mm] +(k_{n-2} [/mm] + [mm] k_{n-1}) b_{n-1} [/mm] + [mm] (k_{n-1} [/mm] + [mm] k_n) b_n [/mm] = 0.
Damit sind die Vektoren eine Basis, falls es ist:
[mm] k_1 [/mm] + [mm] k_n [/mm] = 0
[mm] k_1 [/mm] + [mm] k_2 [/mm] = 0
...
[mm] k_{n-2} [/mm] + [mm] k_{n-1} [/mm] = 0
[mm] k_{n-1} [/mm] + [mm] k_n [/mm] = 0
Damit erhalte ich aber:
[mm] k_{n-1} [/mm] = [mm] -k_n [/mm] und damit
[mm] k_{n-2} [/mm] = [mm] k_n [/mm] womit wiederum
[mm] k_{n-3} [/mm] = [mm] -k_n
[/mm]
Ich denke mal das ist formal schon ein "großer" Schritt, aber irgendwie spricht es nicht zu mir :-(
Was will mir das sagen?
Viele Grüße und danke für die Hilfe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:28 Sa 01.12.2007 | Autor: | leduart |
Hallo
Du hast also lauter gleiche k, abwechselnd +k und -k.
mit denen geh in deine ürsprüngliche Gleichung! folgt k=0
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:24 Sa 01.12.2007 | Autor: | skiy |
reicht nicht die bedingung, dass die summe aller elemente = 0 sein muss?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:58 Sa 01.12.2007 | Autor: | leduart |
Hallo
Die Frage ist mir nicht klar.
was meinst du mit Summe aller Elemente=0
du musst doch zeigen, dass du n lin unabh. Vektoren hast, wenns ne Basis sein soll! auch wenn sie abhängig sind ist die Summe doch nicht Null??
Ich glaub ich versteh einfach deine Frage nicht.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:24 Sa 01.12.2007 | Autor: | lauser |
Hallo Leduart,
an das hab ich auch gedacht, aber das Problem ist doch, dass ich nicht weiß ob das mit dem + oder - hinhaut, denn ich weiß ja nicht ob n nun gerade ist, oder n ungerade.
Muss ich da eine Fallunterscheidung machen?
Zurück zu:
[mm] (b_1 [/mm] + [mm] b_2) k_1 [/mm] + [mm] (b_2 [/mm] + [mm] b_3) k_2 [/mm] + ... + [mm] k_{n-1} (b_{n-1} [/mm] + [mm] b_n) [/mm] + [mm] k_n (b_n [/mm] + [mm] b_1) [/mm] = 0
Aber ich kann das oben ja "umsortieren":
[mm] (k_1 [/mm] + [mm] k_n) b_1 [/mm] + [mm] (k_1 [/mm] + [mm] k_2) b_2 [/mm] + ... [mm] +(k_{n-2} [/mm] + [mm] k_{n-1}) b_{n-1} [/mm] + [mm] (k_{n-1} [/mm] + [mm] k_n) b_n [/mm] = 0.
Damit sind die Vektoren eine Basis, falls es ist:
[mm] k_1 [/mm] + [mm] k_n [/mm] = 0
[mm] k_1 [/mm] + [mm] k_2 [/mm] = 0
...
[mm] k_{n-2} [/mm] + [mm] k_{n-1} [/mm] = 0
[mm] k_{n-1} [/mm] + [mm] k_n [/mm] = 0
Also [mm] k_1 [/mm] = [mm] -k_n, k_2 [/mm] = [mm] k_n, k_3 [/mm] = [mm] -k_n,...,k_{n-2} [/mm] = [mm] k_n, k_{n-1} [/mm] = [mm] -k_n
[/mm]
Angenommen n ungerade, dann ist:
[mm] k_1 [/mm] = [mm] -k_n, k_2 [/mm] = [mm] k_n, k_3 [/mm] = [mm] -k_n,..., k_{n-1} [/mm] = [mm] k_n. [/mm]
Widerspruch zu dem Ergebnis oben, oder? Das ist nur der Fall wenn [mm] k_n [/mm] = 0, oder? Dann wäre das eine Basis.
Angenommen n gerade, dann ist:
[mm] k_1 [/mm] = [mm] -k_n [/mm] , [mm] k_2 [/mm] = [mm] k_n, k_3 [/mm] = [mm] -k_n,..., k_{n-1} [/mm] = [mm] -k_n.
[/mm]
Steht im Einklang, mit dem was oben steht...
Würde ich das nun in die ursprüngliche Gleichung einsetzen, bekomme ich:
[mm] (b_1 [/mm] + [mm] b_2) k_1 [/mm] + [mm] (b_2 [/mm] + [mm] b_3) k_2 [/mm] + ... + [mm] k_{n-1} (b_{n-1} [/mm] + [mm] b_n) [/mm] + [mm] k_n (b_n [/mm] + [mm] b_1) [/mm] = 0
Setze also ein: [mm] k_1 [/mm] = [mm] -k_n [/mm] , [mm] k_2 [/mm] = [mm] k_n, k_3 [/mm] = [mm] -k_n,..., k_{n-1} [/mm] = [mm] -k_n.
[/mm]
[mm] (b_1 [/mm] + [mm] b_2) -k_n [/mm] + [mm] (b_2 [/mm] + [mm] b_3) k_n [/mm] + ... [mm] -k_n (b_{n-1} [/mm] + [mm] b_n) [/mm] + [mm] k_n (b_n [/mm] + [mm] b_1) [/mm] = 0
Und das ist ja 0 = 0, egal was nun [mm] k_n [/mm] wirklich ist. Das heißt im Fall n gerade, ist das keine Basis -- oder?
Ist der Knackpunkt echt, ob n gerade oder ungerade?
Ich habe aber irgendwie auch das Gefühl, das ich mich in was verenne.
Grüße und dank!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:54 Sa 01.12.2007 | Autor: | leduart |
Hallo
Ja, genau das ist es!
dass bei n gerade die abh. sind kannst du auch direkt
sehen, weil ja (b1+b2)-(b2+b3)+ -...-(b1+bn)=0
und für n Ungerade stimmt das nicht, da kann man direkt sehen, dass man die [mm] b_i [/mm] wieder als Linearkomb. der [mm] b_i*b_{i+1} [/mm] kriegt.
n=3:
((b1+b2)-(b2+b3)+(b3-b1))/2=b1 entsprechennd in höheren ungeraden n.
Also ne Basis für nungerade, keine für n gerade.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:09 Sa 01.12.2007 | Autor: | lauser |
Hallo.
Das ist super! Vielen dank für die Geduld!
Einen schönen ersten Advent!
|
|
|
|