matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Vektorraum
Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:13 Di 26.10.2004
Autor: ossywest

Hallo zusammen,

mal wieder eine neue Frage:

Für einen reellen Vektorraum v [mm] \not= [/mm] {0} und einem Vektor v  [mm] \in [/mm] V seien die Abbildungen [mm] T_{v}:V \to [/mm] V und [mm] M_{v}: [/mm] V [mm] \to [/mm] V durch [mm] T_{v}(x):= [/mm] v+x bezeichnungsweise [mm] M_{v}(x):= [/mm] v-x für alle x [mm] \in [/mm] V definiert.

Beweisen oder widerlege diese Aussage
Für alle v,w [mm] \in [/mm] V gilt [mm] T_{v} [/mm] 'nicht gefüllter Punkt' [mm] T_{w} [/mm] = [mm] T_{v+w} [/mm]

Sehe ich das richtig, es handelt sich um ein Element handelt was in [mm] T_{v} [/mm] und [mm] T_{w}, [/mm] ist es also auch ein Bild. Domit müßte es doch auch ein Vektorraum sein, oder?

Wenn ja wie beweist man das mit einer Formel?

MfG

ossywest!

        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 02:43 Mi 27.10.2004
Autor: Marc

Hallo ossywest,

> Für einen reellen Vektorraum v [mm]\not=[/mm] {0} und einem Vektor v
>  [mm]\in[/mm] V seien die Abbildungen [mm]T_{v}:V \to[/mm] V und [mm]M_{v}:[/mm] V
> [mm]\to[/mm] V durch [mm]T_{v}(x):=[/mm] v+x bezeichnungsweise [mm]M_{v}(x):=[/mm] v-x
> für alle x [mm]\in[/mm] V definiert.
>  
> Beweisen oder widerlege diese Aussage
>  Für alle v,w [mm]\in[/mm] V gilt [mm]T_{v}[/mm] 'nicht gefüllter Punkt'
> [mm]T_{w}[/mm] = [mm]T_{v+w} [/mm]
>  
> Sehe ich das richtig, es handelt sich um ein Element
> handelt was in [mm]T_{v}[/mm] und [mm]T_{w},[/mm] ist es also auch ein Bild.
> Domit müßte es doch auch ein Vektorraum sein, oder?
>  
> Wenn ja wie beweist man das mit einer Formel?

Auch hier geht einiges drunter und drüber. Deine Verständnislücken sind eigentlich zu groß, als dass wir sie hier im Augenblick online füllen könnten.
Du mußt dir unbedingt nochmal alles in Ruhe ansehen und diese vor allem "sacken lassen".
Deine Gedanken sind ziemlich wirr (was aber normal ist am Anfang ;-), war bei mir auch so, deswegen kann es auch nicht böse gemeint sein), aber das Fatale ist eben, dass du dich bei der Entwirrung deine Gedanken ganz auf uns verlässt. Das können wir hier im Augenblick nicht für dich leisten.

Das Forum funktioniert nicht, wenn die Antworten komplette Lehrbuchtexte sein müssen -- dafür gibt es Lehrbücher, oder Kommilitonen, mit denen man in Ruhe den Stoff durchgehen kann.
Unsere Existenzberechtigung haben wir durch das Beantworten konkreter Fragen.

Trotzdem will ich dich mit dieser Aufgabe nicht im Regen stehen lassen :-)

Also, was hat [mm] M_v [/mm] überhaupt hier verloren? Es kommt ja gar nicht in der Fragestellung vor.

Schauen wir uns die Abbildung [mm] T_v [/mm] näher an.
Sie addiert einfach einen Vektor [mm] $x\in [/mm] V$ zu einem fest gewählten Vektor [mm] $v\in [/mm] V$, wie man aus [mm] $T_v(x)=v+x$ [/mm] ablesen kann.

Nun sollst du zeigen, dass [mm] $T_v\circ T_w=T_{v+w}$ [/mm] gilt.

Das Zeichen [mm] "$\circ$" [/mm] bedeutet die Hinterananderausführung der beiden Abbildungen, für einen Vektor [mm] $x\in [/mm] V$ gilt deswegen per Definition von [mm] $\circ$: [/mm]

[mm] $(T_v\circ T_w)(x):=T_v(T_w(x))$ [/mm]

Damit sollte diese Gleichungskette für dich nachvollziehbar sein:

[mm] $(T_v\circ T_w)(x)$ $x\in [/mm] V$
[mm] $=T_v(T_w(x))$ [/mm]
[mm] $=T_v(w+x)$ [/mm]
$=v+(w+x)$
$=(v+w)+x$
[mm] $=T_{v+w}(x)$ $\Box$ [/mm]

Alles klar?

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]