matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteVektoren & Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Eigenwerte" - Vektoren & Matrix
Vektoren & Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren & Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Di 01.09.2009
Autor: Domwow

Aufgabe
Es seien [mm] v1:=\vektor{1 \\ 0\\1}, v2:=\vektor{1 \\ 0\\-1} [/mm] und [mm] v3:=\vektor{0 \\ 1\\0} [/mm] sowie [mm] A:=2*\bruch{v1*v1^T}{v1^Tv1} [/mm] - [mm] 3*\bruch{v2v2^T}{v2^Tv2}. [/mm]

Bewerten Sie zu diesen Vorgaben die folgenden Aussagen:

- Es gibt ein von Null verschiedenes x [mm] \in \IR^3 [/mm] mit [mm] ||Ax||_2 [/mm] = [mm] 2||x||_2 [/mm]

- {x|Ax = 0} = span {v3}

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Tag!

Zu dieser Aufgabenstellung kann ich nur sagen, dass die Brüche bei A jeweils Projektionen auf die Richtungen von v1 und v2 sind. Bei der ersten Aussage sieht mir die Gleichung nach der Eigenwert-Eigenvektor-Gleichung aus.
Bei der zweiten Aussage ist span{v3} doch gleich [mm] \bruch{v3*v3^T}{v3^Tv3}?! [/mm]

Ich brauche dringend Denkanstöße!


Vielen Dank im Voraus!


Lieben Gruß, Dom.

        
Bezug
Vektoren & Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 05:21 Do 03.09.2009
Autor: felixf

Hallo Dom,

> Es seien [mm]v1:=\vektor{1 \\ 0\\1}, v2:=\vektor{1 \\ 0\\-1}[/mm]
> und [mm]v3:=\vektor{0 \\ 1\\0}[/mm] sowie
> [mm]A:=2*\bruch{v1*v1^T}{v1^Tv1}[/mm] - [mm]3*\bruch{v2v2^T}{v2^Tv2}.[/mm]
>  
> Bewerten Sie zu diesen Vorgaben die folgenden Aussagen:
>  
> - Es gibt ein von Null verschiedenes x [mm]\in \IR^3[/mm] mit
> [mm]||Ax||_2[/mm] = [mm]2||x||_2[/mm]
>  
> - {x|Ax = 0} = span {v3}

warum rechnest du die Matrix nicht einfach mal aus und schreibst sie hin?

Du siehst dann sofort, dass
a) sie Rang 2 hat,
b) [mm] $v_3$ [/mm] im Kern liegt,
c) der Vektor [mm] $\vektor{ 1 \\ 0 \\ 1 }$ [/mm] auf [mm] $\vektor{ 2 \\ 0 \\ 2 }$ [/mm] abgebildet wird.

Aus c) folgt die erste Aussage, und aus a) und b) folgt die zweite Aussage.

LG Felix


Bezug
                
Bezug
Vektoren & Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Do 03.09.2009
Autor: Domwow

Mit [mm] \pmat{ -0,5 & 0 &2.5\\ 0 &0&0\\2.5&0&-0.5 } [/mm]  wird das dann auch deutlicher.


Danke!


Lieben Gruß!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]