matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Vektoren
Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:52 Mi 03.10.2012
Autor: TioZ

Hallo, Schreibe demnächst eine Mathe Klausur und habe eine Frage: Es geht um das analytische Geometrie: cosphi=vektor AB * vektor AC / vektor in Betragsstrichen AB * vektor in Betragsstrichen AC. Vektor A (6 , -2 , 1) Vektor B ( 2 ,2 , -1) Vektor C ( -4, -1, 3) Wenn ich kjetzt vektor AB zum beispiel ausrechen muss ich ja B - A rechnen, glaube ich jedenfalls. Also habe ich das soweit raus cosphi= (-4, 4, -2) * (-10, 1 ,2) / 6 * 10,25 Das 6 *10, 25 habe ich aus den Lösungen und ich weiß nicht wie man darauf kommt? Kann mir es einer erklären? Ich hoffe man versteht es einigermaßen, was ich hier geschrieben habe:D

        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mi 03.10.2012
Autor: reverend

Hallo TioZ,

> Ich hoffe man versteht es
> einigermaßen, was ich hier geschrieben habe:D

Ich verstehe es, aber es ist grottenschlecht zu lesen. Bitte benutze doch die Formelschreibweise bzw. den Formeleditor hier. In diesem Forum kannst Du fast jede Formel darstellen - und soweit es die Schulmathematik angeht, garantiert jede.

> Hallo, Schreibe demnächst eine Mathe Klausur und habe eine
> Frage: Es geht um das analytische Geometrie: cosphi=vektor
> AB * vektor AC / vektor in Betragsstrichen AB * vektor in
> Betragsstrichen AC.

Das ist wie Vorlesen. Man muss es laut lesen, um es zu verstehen. Schreib doch einfach:

[mm] \cos{\varphi}=\bruch{\overrightarrow{AB}*\overrightarrow{AC}}{|\overrightarrow{AB}|*|\overrightarrow{AC}|} [/mm]

Klick auf die Formel, dann siehst Du, was ich dafür geschrieben habe. Das gilt auch für die Formeln unten.

> Vektor A (6 , -2 , 1) Vektor B ( 2 ,2 ,
> -1) Vektor C ( -4, -1, 3)

Das sind also die Ortsvektoren von A,B,C, mit [mm] \vec{a}=\vektor{6\\-2\\1}, \vec{b}=\vektor{2\\2\\-1}, \vec{c}=\vektor{-1\\-1\\3} [/mm]

> Wenn ich kjetzt vektor AB zum
> beispiel ausrechen muss ich ja B - A rechnen, glaube ich

Richtig.

> jedenfalls. Also habe ich das soweit raus cosphi= (-4, 4,
> -2) * (-10, 1 ,2) / 6 * 10,25 Das 6 *10, 25 habe ich aus
> den Lösungen und ich weiß nicht wie man darauf kommt?
> Kann mir es einer erklären?

Weißt Du, wie der Betrag eines Vektors definiert ist?

[mm] \left|\vektor{x\\y\\z}\right|=\wurzel{x^2+y^2+z^2} [/mm]

10,25 ist dabei übrigens keine genaue Angabe, sondern gerundet.

Grüße
reverend




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]