matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVectordarstell. in and. Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Vectordarstell. in and. Basis
Vectordarstell. in and. Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vectordarstell. in and. Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 11.07.2006
Autor: Paddi

Aufgabe
Geg.: b1=(1 1 [mm] 0)^t, [/mm] b2 = (-1 1 [mm] 0)^t [/mm] , b3 = (0 0 [mm] 1)^t [/mm]
          Vector x = (3 1 [mm] 3)^t [/mm]
Die Vectoren b1, b2, b3 stellen eine Basis im R³ dar.

Ich möchte den Vector x in dieser Basis mit Hilfe des Gauß - Algorithmus darstellen. Mit dem Gauß kenne ich mich aus, jedoch leider weiß ich nicht wie ich diesen auf diese Problematik anwenden kann.

Wie man den Vector in dieser Basis mit Hilfe des Scalarprodukts oder einer transponierten Matrix darstellt weiß ich.

Vielleicht hat ja jemand einen Lösungsvorschlag.

Schon mal vielen dank.


Gruß

Paddi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vectordarstell. in and. Basis: Kleine Hilfe
Status: (Antwort) fertig Status 
Datum: 21:35 Di 11.07.2006
Autor: Zwerglein

Hi, Paddy,

wenn Du die "neuen" Koordinaten des Vektors x mit a, b und c bezeichnest, dann gilt:

[mm] \pmat{ 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 } [/mm] * [mm] \vektor{a \\ b \\ c} [/mm] = [mm] \vektor{3 \\ 1 \\ 1} [/mm]

Naja: Und nun musst Du halt a, b und c mit Hilfe des Gauß-Verfahrens ausrechnen!

mfG!
Zwerglein

Bezug
                
Bezug
Vectordarstell. in and. Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Mi 12.07.2006
Autor: Paddi

hallo,
schon mal danke für die schnelle Antwort.

Ich habe das mal ausprobiert. Diese Darstellung trifft jedoch so weit ich das erkennen kann nicht auf dieses Problem zu. Wenn ich so den Gauß anwende, dann stelle ich den Vector X doch bereits als Zielvector im Gleichungssystem dar. Wenn für dieses System der Gauß ausgeführt wird, wird ein Vector errechnet der x in seiner bisherigen Form herleitet. Jedoch nicht in der Basis b1b2b3.

[b1b2b3 * a = x]

(Bei Berechnung mit Gauß wird ja "a" berechnet)

Bei der Berechnung mit Skalarprodukt und der Multiplikation mit  transponierter Matrix habe ich folgenden Vector errechnet: X2 = (4 -2 3)
Dieses Ergebnis habe ich schon mit dem von anderen Studenten verglichen. Die hatte das gleiche raus.

Leider stehen wir was die Geschichte mit den Gauß angeht auf dem Schlauch.

Vielleicht weiß ja noch jemand weiter.

Gruß

Paddi

Bezug
                        
Bezug
Vectordarstell. in and. Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mi 12.07.2006
Autor: Zwerglein

Hi, paddy,

fang' ich mal von hinten an:

Der Vektor [mm] \vec{x} [/mm] hat bezüglich der Basis
e1 = [mm] \vektor{1 \\ 0 \\ 0}, [/mm]  e2 =  [mm] \vektor{0 \\ 1 \\ 0}, [/mm]  e3 =  [mm] \vektor{0 \\ 0 \\ 1} [/mm] die Koordinaten [mm] \vektor{3 \\ 1 \\ 1}. [/mm]
Das heißt doch ausführlich geschrieben:

[mm] \vec{x} [/mm] = 3*e1 + 1*e2 + 1*e3.

Und nun sollst Du analog die Darstellung von [mm] \vec{x} [/mm] bezüglich der neuen Basis suchen, also:

[mm] \vec{x} [/mm] = a*b1 + b*b2 + c*b3

a, b und c sind keine kartesischen Koordinaten, sondern - so hat man's früher genannt - "Komponenten" bezüglich der neuen Basis [mm] \{ b1; b2; b3 \}. [/mm]
Daher hat's auch keinen Sinn, am Ende als Lösung einfach einen Vektor
[mm] \vektor{a \\ b \\ c} [/mm] zu schreiben!

Das Ergebnis ist: [mm] \vec{x} [/mm] = 2*b1 - 1*b2 + 1*b3

Jetzt klar?

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]