matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVandermonde Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Vandermonde Matrix
Vandermonde Matrix < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vandermonde Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:37 Mi 29.06.2011
Autor: sunnygirl26

Aufgabe
Seien [mm] \lambda [/mm] 1, [mm] .....\lambda [/mm] € K. Begründen sie warum die Matrix
[mm] \pmat{ 1 & ... & 1 \\ \lambda 1 & ... & \lambda n \\ \lambda 2/1 & ... & \lambda 2/n }..... [/mm] genau dann invertierbar ist wenn [mm] \lambda [/mm] 1 .... [mm] \lambda [/mm] n paarweise verschieden sind. Eine Matrix dieser Form heißt Vandermonde Matrix.

Ich hab ehrlich gesagt keine ahnung wie ich daran gehen soll ich bräuchte einfach einen Ansatz kann mir da jmd helfen. Stehe total aufm schlauch

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vandermonde Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 Mi 29.06.2011
Autor: MathePower

Hallo sunnygirl26,

[willkommenmr]


> Seien [mm]\lambda[/mm] 1, [mm].....\lambda[/mm] € K. Begründen sie warum
> die Matrix
> [mm]\pmat{ 1 & ... & 1 \\ \lambda 1 & ... & \lambda n \\ \lambda 2/1 & ... & \lambda 2/n }.....[/mm]
> genau dann invertierbar ist wenn [mm]\lambda[/mm] 1 .... [mm]\lambda[/mm] n
> paarweise verschieden sind. Eine Matrix dieser Form heißt
> Vandermonde Matrix.
>  Ich hab ehrlich gesagt keine ahnung wie ich daran gehen
> soll ich bräuchte einfach einen Ansatz kann mir da jmd
> helfen. Stehe total aufm schlauch


Überlege Dir zunächst, wann eine Matrix nicht invertierbar ist.


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Gruss
MathePower

Bezug
                
Bezug
Vandermonde Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Mi 29.06.2011
Autor: sunnygirl26

eine Matrix ist nicht invertierbar wenn die determinante 0 ist bzw. wenn es keine matrix B gibt so dass A*B=B*A= Einselement ist.
D.h also ich muss jetzt zeigen das die Determinante nur nicht 0 ist wenn [mm] \lambda [/mm] 1 ....... [mm] \lambda [/mm] n paarweise verschieden sind oder?

Bezug
                        
Bezug
Vandermonde Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mi 29.06.2011
Autor: schachuzipus

Hallo sunnygirl26,


> eine Matrix ist nicht invertierbar wenn die determinante 0
> ist [ok]

Genau das ist die Idee!

> bzw. wenn es keine matrix B gibt so dass A*B=B*A=
> Einselement ist.
>  D.h also ich muss jetzt zeigen das die Determinante nur
> nicht 0 ist wenn [mm]\lambda[/mm] 1 ....... [mm]\lambda[/mm] n paarweise
> verschieden sind oder?

Ja, bzw. "... genau dann, wenn ..."

Also rechne mal zuerst die Determinante dieser fiesen Matrix aus ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]