matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteV_0, V_+ und V_-
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - V_0, V_+ und V_-
V_0, V_+ und V_- < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

V_0, V_+ und V_-: Sylvester
Status: (Frage) überfällig Status 
Datum: 22:27 Di 24.06.2008
Autor: tinakru

Aufgabe
Aufgabe:


  
Gegegen sei folgende 4x4 Matrix:

1 0 1 0
0 1 1 2
1 1 0 0
0 2 0 2

Diese Matrix definiert eine symmetrische Bilinearform  

Bestimmen sie gemäß des Trägheitssatzes von Sylvester Unterräume
von [mm] \IR^4 [/mm]  mit

[mm] \IR^4 [/mm] = [mm] V_0 [/mm]  + [mm] V_{+} [/mm]  + [mm] V_{-} [/mm]  


Wie bestimme ich [mm] V_{+} [/mm]  und [mm] V_{-} [/mm]  

[mm] ´V_0 [/mm] ist mir klar wie das geht. Da habe ich einfach das Gleichungssystem

Ax = 0 gelöst.
Aber die anderen beiden weiß ich nicht genau.
Ich hatte folgende Idee.

Ich bestimme die Eigenwerte von A und dann die zugehörigen Eigenräume.
Ist ein Eigenwert positiv, so zählt er zu  

Mein Problem ist aber, dass die Matrix A zwar 4 Eigenwerte hat, einer davon ist 0, aber die anderen 3 Eigenwerte sind reell (leider nicht ganzzahlig)

Jetzt wollt ich mal fragen, ob diese Idee überhaupt richtig wäre.
Wie kann ich dann mein Problem lösen, also  und  bestimmen.



        
Bezug
V_0, V_+ und V_-: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Do 26.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]