matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisVR d. Polynome kein Banachraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - VR d. Polynome kein Banachraum
VR d. Polynome kein Banachraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

VR d. Polynome kein Banachraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:15 Di 08.05.2012
Autor: Schachtel5

Hallo,
das der Vektorraum der Polynome auf [mm] \IR [/mm] P, also [mm] (P(\IR), \parallel [/mm] . [mm] \parallel) [/mm] kein Banachraum ist, sehe ich ein und verstehe die Begründungen, außer die mit dem Satz von Baire, wie wir das im Tutorium hatten. Wir haben [mm] P_n [/mm] den Unterraum mit Polynome vom Grad [mm] \le [/mm] n betrachtet. [mm] P=\bigcup_{n\in \IN}^{}P_n [/mm] . wir haben ein Polynom vom Grad n+1 gefunden, dass beliebig nah an Polynom in [mm] P_n [/mm] liegt, aber ich verstehe nicht, wie man hier mit dem Satz von Baire argumentiert, wieso ist das dann ein Widerspruch zu dem? Ich hoffe, mir kann jemand helfen. Lg

        
Bezug
VR d. Polynome kein Banachraum: Antwort
Status: (Antwort) fertig Status 
Datum: 06:35 Di 08.05.2012
Autor: fred97


> Hallo,
> das der Vektorraum der Polynome auf [mm]\IR[/mm] P, also [mm](P(\IR), \parallel[/mm]
> . [mm]\parallel)[/mm] kein Banachraum ist, sehe ich ein und verstehe
> die Begründungen, außer die mit dem Satz von Baire, wie
> wir das im Tutorium hatten. Wir haben [mm]P_n[/mm] den Unterraum mit
> Polynome vom Grad [mm]\le[/mm] n betrachtet. [mm]P=\bigcup_{n\in \IN}^{}P_n[/mm]
> . wir haben ein Polynom vom Grad n+1 gefunden, dass
> beliebig nah an Polynom in [mm]P_n[/mm] liegt, aber ich verstehe
> nicht, wie man hier mit dem Satz von Baire argumentiert,
> wieso ist das dann ein Widerspruch zu dem? Ich hoffe, mir
> kann jemand helfen. Lg


Ich verstehe nicht so recht, wie der von Dir beschriebene Beweis mit dem Satz von Baire gehen soll.

Ich würde es so machen: wir nehmen an, P wäre ein Banachraum. Da die Unterräume [mm] P_n [/mm] endlichdimensional sind, sind sie abgeschlossen. Wegen
$ [mm] P=\bigcup_{n\in \IN}^{}P_n [/mm] $ folgt aus dem Satz von Baire, dass es ein N [mm] \in \IN [/mm] gibt , so dass [mm] P_N [/mm] eine offene Kugel enthält.

Dann ist aber [mm] P_N=P, [/mm] Widerspruch !

Dabei habe ich folgendes Lemma verwendet:

Lemma: Ist X ein normierter Raum und Y ein Unterraum, der eine offene Kugel enthält, so ist Y=X.

Kannst Du dieses Lemma beweisen ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]