VR-Homomorphismus, Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:25 Sa 10.04.2010 | Autor: | MosDef |
Aufgabe | Sei [mm] \{e_{i}|i=1,...,n\} [/mm] die kanonische Basis des [mm] \IR^{n}. [/mm] Zeigen Sie, dass [mm] \{e_{i}'|i=1,...,n\} [/mm] eine Basis von [mm] Hom(\IR^{n},\IR) [/mm] ist, wobei
[mm] e_{i}'(e_{j}):=\delta_{ij} [/mm] und
[mm] \delta_{ij} [/mm] das Kronecker-Delta-Symbol ist. D.h. für [mm] v=\summe_{i=j}^{n}a_{j}e_{j} \in \IR^{n} [/mm] ist [mm] e_{i}'(v)=a_{i}. [/mm] |
Ich muss also zeigen, dass [mm] \{e_{i}'|i=1,...,n\} [/mm] ein lin. unabh. Erzeugendensystem von [mm] Hom(\IR^{n},\IR) [/mm] ist, oder?
Zunächst lin. Unabhängigkeit:
Seien [mm] \lambda_{i} \in \IR, [/mm] i=1,...,n mit [mm] \summe_{i=1}^{n}\lambda_{i}e_{i}'=0 \in Hom(\IR^{n},\IR). [/mm] D.h. [mm] (\summe_{i=1}^{n}\lambda_{i}e_{i}')(v)=0 \forall [/mm] v [mm] \in \IR^{n} [/mm] und insb. für [mm] v=e_{j}
[/mm]
Also ist [mm] 0=(\summe_{i=1}^{n}\lambda_{i}e_{i}')(e_{j})=\summe_{i=1}^{n}\lambda_{i}e_{i}'(e_{j})=(\summe_{i=1}^{n}\lambda_{i}e_{i}')\delta_{ij}=\lambda_{j}
[/mm]
Da j bel. ist [mm] \lambda_{j}=0 \forall [/mm] i=1,...,n
Stimmt das so?
Nun zu [mm] \{e_{i}'\} [/mm] ist EZS:
Sei f [mm] \in Hom(\IR^{n},\IR). [/mm] Dann muss ich zeigen: [mm] \exists \lambda_{i} \in \IR, [/mm] sodass [mm] \summe_{i=1}^{n}\lambda_{i}e_{i}'=f. [/mm]
D.h. [mm] \forall [/mm] v [mm] \in \IR^{n}: (\summe_{i=1}^{n}\lambda_{i}e_{i}')(v)=f(v), [/mm] richtig?
Problem ist nur: wie mache ich das?? Kann mir da jemand helfen?
Grüße
Mos
|
|
|
|
> Sei [mm]\{e_{i}|i=1,...,n\}[/mm] die kanonische Basis des [mm]\IR^{n}.[/mm]
> Zeigen Sie, dass [mm]\{e_{i}'|i=1,...,n\}[/mm] eine Basis von
> [mm]Hom(\IR^{n},\IR)[/mm] ist, wobei
> [mm]e_{i}'(e_{j}):=\delta_{ij}[/mm] und
> [mm]\delta_{ij}[/mm] das Kronecker-Delta-Symbol ist. D.h. für
> [mm]v=\summe_{i=j}^{n}a_{j}e_{j} \in \IR^{n}[/mm] ist
> [mm]e_{i}'(v)=a_{i}.[/mm]
> Ich muss also zeigen, dass [mm]\{e_{i}'|i=1,...,n\}[/mm] ein lin.
> unabh. Erzeugendensystem von [mm]Hom(\IR^{n},\IR)[/mm] ist, oder?
>
> Zunächst lin. Unabhängigkeit:
> Seien [mm]\lambda_{i} \in \IR,[/mm] i=1,...,n mit
> [mm]\summe_{i=1}^{n}\lambda_{i}e_{i}'=0 \in Hom(\IR^{n},\IR).[/mm]
> D.h. [mm](\summe_{i=1}^{n}\lambda_{i}e_{i}')(v)=0 \forall[/mm] v
> [mm]\in \IR^{n}[/mm] und insb. für [mm]v=e_{j}[/mm]
> Also ist
> [mm]0=(\summe_{i=1}^{n}\lambda_{i}e_{i}')(e_{j})=\summe_{i=1}^{n}\lambda_{i}e_{i}'(e_{j})=\red{(\summe_{i=1}^{n}\lambda_{i}e_{i}')\delta_{ij}}\=\lambda_{j}[/mm]
Hallo,
an der rotmarkierten Stelle muß [mm] \summe\lambda_i\delta_i_j [/mm] stehen.
> Da j bel. ist [mm]\lambda_{j}=0 \forall[/mm] i=1,...,n
> Stimmt das so?
Ja.
>
>
> Nun zu [mm]\{e_{i}'\}[/mm] ist EZS:
> Sei f [mm]\in Hom(\IR^{n},\IR).[/mm] Dann muss ich zeigen: [mm]\exists \lambda_{i} \in \IR,[/mm]
> sodass [mm]\summe_{i=1}^{n}\lambda_{i}e_{i}'=f.[/mm]
> D.h. [mm]\forall[/mm] v [mm]\in \IR^{n}: (\summe_{i=1}^{n}\lambda_{i}e_{i}')(v)=f(v),[/mm]
> richtig?
Ja.
> Problem ist nur: wie mache ich das??
Du mußt hier die besonderen Eigenschaften der linearen Funktion f nutzen.
Die Funktion f ist durch die Angabe ihrer Werte auf der Basis [mm] (e_1,...,e_n) [/mm] eindeutig bestimmt.
Sei [mm] f(e_i)= \mu_i
[/mm]
Es muß ja gelten für alle i: [mm] f(e_i)=\summe_{j=1}^{n}\lambda_{j}e_{j}')(e_i).
[/mm]
Auf diese Weise kannst Du Dir die Koeffizienten [mm] \lambda_i [/mm] "erobern".
Gruß v. Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:42 Sa 10.04.2010 | Autor: | MosDef |
Danke für die schnelle Antwort!
Die rotmarkierte Stelle ist mir dann auch aufgefallen, war ein Tipp- (bzw. Kopier-)fehler...
> > Nun zu [mm]\{e_{i}'\}[/mm] ist EZS:
> > Sei f [mm]\in Hom(\IR^{n},\IR).[/mm] Dann muss ich zeigen:
> [mm]\exists \lambda_{i} \in \IR,[/mm]
> > sodass [mm]\summe_{i=1}^{n}\lambda_{i}e_{i}'=f.[/mm]
> > D.h. [mm]\forall[/mm] v [mm]\in \IR^{n}: (\summe_{i=1}^{n}\lambda_{i}e_{i}')(v)=f(v),[/mm]
> > richtig?
>
> Ja.
>
> > Problem ist nur: wie mache ich das??
>
> Du mußt hier die besonderen Eigenschaften der linearen
> Funktion f nutzen.
> Die Funktion f ist durch die Angabe ihrer Werte auf der
> Basis [mm](e_1,...,e_n)[/mm] eindeutig bestimmt.
>
> Sei [mm]f(e_i)= \mu_i[/mm]
>
> Es muß ja gelten für alle i:
> [mm]f(e_i)=\summe_{j=1}^{n}\lambda_{j}e_{j}')(e_i).[/mm]
>
> Auf diese Weise kannst Du Dir die Koeffizienten [mm]\lambda_i[/mm]
> "erobern".
>
Leider verstehe ich nicht so recht, was Du hiermit meinst... Könntest Du das etwas konkretisieren?
Und wie kann man denn das "für [mm] v=\summe_{j=1}^{n}a_{j}e_{j} \in \IR^{n} [/mm] ist [mm] e_{i}'(v)=a_{i}" [/mm] aus der Angabe nutzen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:26 Sa 10.04.2010 | Autor: | Doing |
Hallo!
Ist dir denn die Aussage von der Angela gesprochen hat bekannt? Also kannst du benutzen, dass jede lineare Abbildung durch ihre Anwendung auf eine Basis eindeutig bestimmt ist?
Falls ja ist der Beweis ein Einzeiler, du musst bloß deinen Homomorphismus mit der Basis füttern und hast deine Koeffizienten.
Falls dir der Satz nicht bekannt ist (was sehr komisch wäre, da das im Normalfall doch immer drankommt und es auch nicht grad schwer ist das zu beweisen) lässt du deinen Homomorphismus auf ein beliebiges v aus dem [mm] \IR^n [/mm] wirken und benutzt dessen Eigenschaften als lineare Abbildung.
Gruß,
Doing
|
|
|
|