matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikUrnenziehung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Urnenziehung
Urnenziehung < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenziehung: Anregung/Denkanstoß
Status: (Frage) beantwortet Status 
Datum: 00:16 Mi 10.10.2007
Autor: h0tte

Aufgabe
Wie groß ist die Wahrscheinlichkeit, dass 1. das Wort Baum und 2. das Wort Bett
a) ohne Zurücklegen
b) mit Zurücklegen
der Buchstaben aus einer Urne mit den 26 Buchstaben des Alphabetes gezogen wird.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mit dem Wort "Baum" komme ich noch ganz gut klar. Unsicher bin ich mir bei dem Wort "Bett" mit dem doppelten Buchstaben.

Baum:
[mm] n^k [/mm]
n=26; k=4
[mm] 26^4=358000 [/mm] Möglichkeiten

Bett:
n=26; k=3
[mm] 26^3=17576 [/mm] Möglichkeiten ?

b)
Baum:
n!:(n-k)!
n=26; k=4
26!:22!=456976 Möglichkeiten

Bett:
n=26; k=3
26!:23!=15600 Möglichkeiten ?

Ist das so richtig?
Wie komme ich von den Möglichkeiten zur Wahrscheinlichkeit?

Vielen Dank für Eure Hilfe.

        
Bezug
Urnenziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:20 Mi 10.10.2007
Autor: Fulla

Hi h0tte!

Also, generell gilt:
Wahrscheinlichkeit = Anzahl der "günstigen" Möglichkeiten / Anzahl aller Möglichkeiten

Zur Aufgabe:
Mit Zurücklegen: BAUM
Die Wahrscheinlichkeit, als erstes das "B" zu ziehen, ist 1/26. Das "B" kommt wieder zurück, und die Wkeit, als nächstes das "A" zu ziehen ist wieder 1/26. Und so weiter... also ist die Wahrscheinlichkeit für BAUM = [mm] (1/26)^4. [/mm]
Bzw. es gibt nur eine "günstige" Möglichkeit (nämlich genau die Buchstaben B-A-U-M zu ziehen) und insgesammt [mm] 26^4 [/mm] Möglichkeiten -> [mm] (1/26)^4 [/mm]

Bei BETT ist es dasselbe.

Ohne Zurücklegen: BAUM
"B" 1/26
"A" 1/25 (es gibt ja nur noch 25 Buchstaben in der Urne)
"U" 1/24
"M" 1/23
-> 1/358800

BETT
"B" 1/26
"E" 1/25
"T" 1/24
"T" 0/26 (es gibt nur ein T, also wirst du nie ein zweites ziehen können)
-> Wahrscheinlichkeit = 0


Ich hoffe, das hilft dir weiter.
Lieben Gruß,
Fulla

Bezug
                
Bezug
Urnenziehung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Mi 10.10.2007
Autor: h0tte

Danke für die fixe Antwort.

LG H0tte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]