matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUntervektorraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Untervektorraum
Untervektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum: Frage nach Richtigkeit
Status: (Frage) beantwortet Status 
Datum: 00:44 Mi 16.11.2005
Autor: Niente

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo,

ich soll bestimmen ob die Teilmenge ein Untervektorraum von [mm] \IR^3 [/mm] ist {(x,y,z)| x+y+z=1}. Ich habe mir überlegt UV1-UV3 zu übeprüfen. Meiner Meinung nach handelt es sich bei dieser Teilmenge um keinen UVR, da (0,0,0) durch die Einschränkung der angegebenen Menge (x+y+z = 1) nicht enthalten ist... stimmt meine Überlegung??

Bei der Menge  {(x,y,z)| z [mm] \ge [/mm] 0} bin ich mir bei UV3 (Multiplikation) nicht sicher: Sei v= (a,b,c) [mm] \in [/mm]  der angegebenen Menge und [mm] \lambda \in [/mm] des K-Vektorraums, dann ist zu zeigen, dass [mm] \lambda [/mm] v \ der Menge

[mm] \lambda [/mm] v= [mm] \lambda [/mm] a, [mm] \lambda [/mm] b, [mm] \lambda [/mm] c) Die oben angegebene Menge ist doch nur ein UVR, wenn [mm] \lambda \ge [/mm] 0, oder? Schließlich ist oben definiert, dass z immer [mm] \ge [/mm] 0 sein muss... ist [mm] \lambda [/mm]  aber  < 0, so ergibt sich für die z-Komponete ebenfalls < 0... ist das so richtig?

Vielen Dank für eure Hilfe...
LG Niente

        
Bezug
Untervektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Mi 16.11.2005
Autor: Sigrid

Hallo Niente,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Hallo,
>  
> ich soll bestimmen ob die Teilmenge ein Untervektorraum von
> [mm] \IR^3 [/mm] ist {(x,y,z)| x+y+z=1}. Ich habe mir überlegt UV1-UV3
> zu übeprüfen. Meiner Meinung nach handelt es sich bei
> dieser Teilmenge um keinen UVR, da (0,0,0) durch die
> Einschränkung der angegebenen Menge (x+y+z = 1) nicht
> enthalten ist... stimmt meine Überlegung??

[ok] Das sehe ich genau so.

>
> Bei der Menge  [mm] \{(x,y,z)| z \ge 0 \} [/mm] bin ich mir bei UV3
> (Multiplikation) nicht sicher: Sei v= (a,b,c) [mm]\in[/mm]  der
> angegebenen Menge und [mm]\lambda \in[/mm] des K-Vektorraums, dann
> ist zu zeigen, dass [mm]\lambda[/mm] v \ der Menge
>  
> [mm]\lambda[/mm] v= [mm]\lambda[/mm] a, [mm]\lambda[/mm] b, [mm]\lambda[/mm] c) Die oben
> angegebene Menge ist doch nur ein UVR, wenn [mm]\lambda \ge[/mm] 0,

Damit ist es aber kein UVR.

> oder? Schließlich ist oben definiert, dass z immer [mm]\ge[/mm] 0
> sein muss... ist [mm]\lambda[/mm]  aber  < 0, so ergibt sich für die
> z-Komponete ebenfalls < 0... ist das so richtig?

Genau. Am besten nimmst du ein Gegenbeispiel:

[mm] (0,0,1) \in M [/mm]  aber  [mm] -\ 1\ (0,0,1) = (0,0,-1) \not\in M [/mm]

Gruß
Sigrid

>  
> Vielen Dank für eure Hilfe...
>  LG Niente

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]