matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUntersuchung auf Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Untersuchung auf Konvergenz
Untersuchung auf Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung auf Konvergenz: Frage
Status: (Frage) beantwortet Status 
Datum: 13:17 Sa 16.07.2005
Autor: Nike001

Hallo ihr Lieben,

hätte mal eine Frage zur Konvergenzuntersuchung bei rekursiv definierten Folgen, da hab ich nämlich so meine Probleme mit. Und zwar hab ich in einer alten Examensklausur folgende Aufgabe gefunden:

Es sei  [mm] (a_{n}) [/mm] mit n von 1 bis  [mm] \infty [/mm] .
[mm] a_{1} [/mm] = 1
[mm] a_{n+1} [/mm] =  [mm] a_{n} [/mm] + ( [mm] (-1^{n}) [/mm] / [mm] 2^{n}) [/mm]

Dazu hab ich die ersten 10 Werte berechnet und festgestellt dass der Grenzwert wohl etwa bei 0,75 liegt. Den hab ich dann in meine Gleichung für Konvergenzuntersuchungen eingesetzt:
[mm] |a_{n}+((-1^{n}) [/mm] / [mm] 2^{n}) [/mm] - 0,75| < [mm] \varepsilon [/mm]
als [mm] \varepsilon [/mm] habe ich 0,5 gewählt.

Leider hänge ich genau hier jetzt fest. Kann man das so angehen? Und wenn ja: wäre einer von euch so lieb mir das mal gaaanz ausführlich vorzurechnen, damit ichs in Zukunft auch auf alle anderen Folgen anwenden kann?

Vielen Dank schon im Voraus,
liebe Grüße,
Nicole


        
Bezug
Untersuchung auf Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Sa 16.07.2005
Autor: Fire21

Hallo Nicole,

>  
> Es sei  [mm](a_{n})[/mm] mit n von 1 bis  [mm]\infty[/mm] .
>   [mm]a_{1}[/mm] = 1
>   [mm]a_{n+1}[/mm] =  [mm]a_{n}[/mm] + ( [mm](-1^{n})[/mm] / [mm]2^{n})[/mm]
>  
> Dazu hab ich die ersten 10 Werte berechnet und festgestellt
> dass der Grenzwert wohl etwa bei 0,75 liegt. Den hab ich
> dann in meine Gleichung für Konvergenzuntersuchungen
> eingesetzt:
>  [mm]|a_{n}+((-1^{n})[/mm] / [mm]2^{n})[/mm] - 0,75| < [mm]\varepsilon[/mm]
>  als [mm]\varepsilon[/mm] habe ich 0,5 gewählt.
>  

Nein, so kann man das leider nicht angehen, denn du darfst für [mm] \epsilon [/mm] nicht einfach etwas wählen, die obige Abschätzung muß im Gegenteil für alle [mm] \epsilon [/mm] >0 gelten!  Außerdem hast du die 0,75 ja auch nur geschätzt, damit könntest du zwar richtig liegen, aber wenn das "erst" dein zehnter Wert der Folge ist, muß es nicht auch der exakte Grenzwert ist.

Bei dieser induktiv definierten Folge kann man den Grenzwert aber folgendermaßen ausrechnen, und zwar gilt:

[mm] a_{n}=a_{1}+\frac{(-1)^{n}}{2^{n}}=a_{n-2}+ \frac{(-1)^{n-1}}{2^{n-1}}+\frac{(-1)^{n}}{2^{n}}=....=a_{1}+\sum_{i=1}^{n-1} (\frac{-1}{2})^{i} [/mm]

Das wäre per Induktion zu beweisen. Und nun folgt weiter:

[mm] \lim_{n\rightarrow\infty} a_{n} [/mm] = [mm] a_{1} +\lim_{n\rightarrow\infty} \sum_{i=1}{n-1}(\frac{-1}{2})^{i} [/mm]

Man hat das Problem also auf den Grenzwert  einer gemoetrischen Reihe reduziert und wegen [mm] |\frac{-1}{2}|<1 [/mm] konvergiert diese gegen
[mm] \frac{1}{1-(\frac{-1}{2})} [/mm] -1= [mm] -\frac{1}{3} [/mm] und damit folgt:

[mm] \lim_{n\rightarrow\infty} a_{n} [/mm] = [mm] a_{1} +\frac{-1}{3} [/mm] = [mm] \frac{2}{3} [/mm]

(also nicht ganz 0,75)

Beim wem hast du denn in Heidelberg die Analysis-Vorlesung gehört?

Gruß


Bezug
                
Bezug
Untersuchung auf Konvergenz: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:33 So 17.07.2005
Autor: Nike001

Hi du,

danke für die schnelle Antwort. Da hab ich wohl noch so einiges zu lernen.
Und weil du wissen wolltest bei wem die Vorlesung war: ich bin ja nicht an der Uni sondern an der PH, von daher werden die dir als Diplomstudent wohl alle recht unbekannt vorkommen (für weitere Fragen dann grad Email an mich ;-) ).

Liebe Grüße,
Nicole



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]