matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisUntersuchen von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Untersuchen von Funktionen
Untersuchen von Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchen von Funktionen: Surjektivität und Injektivität
Status: (Frage) beantwortet Status 
Datum: 01:03 So 09.12.2018
Autor: xXMathe_NoobXx

Aufgabe
Untersuchen Sie nachfolgende Funktionen auf Surjektivität und Injektivität:
[mm] {f}_{1} [/mm] : [mm] \mathbb{C} \setminus\{0\} \to \mathbb{C} \setminus\{0\}, z\to \frac{1}{z} [/mm]
[mm] {f}_{2} [/mm] : [mm] \mathbb{C} \to \mathbb{C}, z\to z+\overline{z} [/mm]
[mm] {f}_{3} [/mm] : [mm] \mathbb{C} \to \mathbb{C}, z\to\sin^8(z) [/mm] - [mm] \sin^5(z) [/mm] + [mm] \sqrt{13}*sin^4(z) [/mm] + [mm] \pi [/mm]
[mm] {f}_{4} [/mm] : [mm] \mathbb{C} \setminus\{1\} \to \mathbb{C}, z\to\frac{1+z}{1-z} [/mm]



Hoffe das mir jemand hierüber helfen kann zu der Aufgabe. Undzwar geht es darum wie man komplexe Funktionen auf Surjektivität und Injektivität untersucht, bei reellen Funktionen ist mir das bereits bekannt. Im komplexen kenne ich das noch gar nicht.

Hoffe das mir jemand helfen kann.
VG :)

        
Bezug
Untersuchen von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 So 09.12.2018
Autor: Gonozal_IX

HIho,

> Hoffe das mir jemand hierüber helfen kann zu der Aufgabe.
> Undzwar geht es darum wie man komplexe Funktionen auf
> Surjektivität und Injektivität untersucht, bei reellen
> Funktionen ist mir das bereits bekannt. Im komplexen kenne
> ich das noch gar nicht.

das unterscheidet sich nicht im geringsten.
Wie hast du das denn im reellen gemacht? Wende das hier ebenso an.

Zusätzlich solltest du dann noch wissen, dass gilt $z = [mm] \text{Re}(z) [/mm] + [mm] i\cdot \text{Im}(z)$ [/mm] und daher jede komplexe Zahl eindeutig durch Angabe des Real- und Imaginärteils bestimmt ist (und umkehrt).

Nun noch ein paar Tipps zu den Einzelaufgaben:
[mm] $f_1$: [/mm] wie würdest du das im rellen zeigen? Das geht hier ganz genauso. Injektivität direkt über die Definition, Surjektivität über die Angabe des (trivialen) Urbilds.

[mm] $f_2$: [/mm] Schreibe [mm] $f_2$ [/mm] mal mit Hilfe des oben erwähnten Real- und Imaginärteils von z. Kann die Funktion dann injektiv o. surjektiv sein?

[mm] $f_3$: [/mm] Beachte  freds Antwort hier

[mm] $f_4$: [/mm] Belies dich mal zur []Möbius-Transformation

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]