matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenUnterraum Implikation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Unterraum Implikation
Unterraum Implikation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum Implikation: Tipp
Status: (Frage) überfällig Status 
Datum: 18:07 So 10.05.2009
Autor: Unk

Aufgabe
Sei f diagonalisierbarer Endomorphismus eines Vektorraums V [mm] (V=\underset{\lambda\in K}{\bigoplus}Eig(f;\lambda)). [/mm] Sei U ein f-invarianter Unterraum von V. [mm] \textbf{Behauptung:} U=\underset{\lambda\in K}{\bigoplus}(\mbox{Eig}(f;\lambda)\cap U) [/mm]

Am Ende soll man noch folgern, dass U eine Basis aus Eigenvektoren für f besitzt.

Hallo,

ich muss hier zwei Implikationen zeigen.
Ich habe mal angefangen:
Sei [mm] v\in U\Rightarrow v\in V\Rightarrow v\in\underset{\lambda\in K}{\bigoplus}Eig(f;\lambda). [/mm] Weiter komme ich hier nicht. Ich kann ja jetzt nicht einfach das Endergebnis hinschreiben oder? Da muss man doch sicherlich noch etwas für zeigen.
Nun die andere Richtung:
Sei [mm] v\in\underset{\lambda\in K}{\bigoplus}(\mbox{Eig}(f;\lambda)\cap [/mm] U)
Hier ergibt sich das gleiche Problem. Irgendwie ist doch klar, dass v dann auch in U ist, aber es hapert eben am formalen Beweis.

Zu der Folgerung weiß ich dann auch noch nichts.

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.  

        
Bezug
Unterraum Implikation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 12.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]