matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterraum - Def. verstehen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum - Def. verstehen
Unterraum - Def. verstehen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum - Def. verstehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:52 So 25.10.2009
Autor: qsxqsx

Hallo...

ich verstehe was ein unteraum ist, und sonst auch so einiges...

nur was bedeutet diese komische formulierung hier: "Sei V die folgende Menge von Vektoren: [mm] {(y+z,y,z)^{T} \in \IR^{3} | y,z \in \IR } [/mm] Zeigen sie das V ein Unterraum des reellen Vektorraumes R3 ist"

Wäre gut wenn jemand (schnell!- bitte) antworten könnte...

Danke vielmal...

        
Bezug
Unterraum - Def. verstehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:54 So 25.10.2009
Autor: qsxqsx

wie soll ich es ZEIGEN?

Bezug
        
Bezug
Unterraum - Def. verstehen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 So 25.10.2009
Autor: T_sleeper


> Hallo...
>  
> ich verstehe was ein unteraum ist, und sonst auch so
> einiges...
>  
> nur was bedeutet diese komische formulierung hier: "Sei V
> die folgende Menge von Vektoren: [mm]{(y+z,y,z)^{T} \in \IR^{3} | y,z \in \IR }[/mm]
> Zeigen sie das V ein Unterraum des reellen Vektorraumes R3
> ist"
>  
> Wäre gut wenn jemand (schnell!- bitte) antworten
> könnte...
>  
> Danke vielmal...

Hallo,
diese Formulierung ist doch nicht komisch.
Du hast also eine Menge gegeben und sollst zeigen, dass sie einen Unterraum vom [mm] \mathbb{R}^3 [/mm] darstellt.

Zeige also die Axiome.
Ist der Nullvektor enthalten? Gilt Abgeschlossenheit bzgl Addition und Multiplikation?

Gruß Sleeper

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]