matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum
Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:10 So 21.04.2013
Autor: sunnygirl26

Aufgabe
Es sei K ein Körper und V ein K-Vektorraum.
(a) Zeigen Sie, dass für Teilmengen S, T [mm] \subseteq [/mm] V gilt: << S > [mm] \cup [/mm] T >=< S [mm] \cup [/mm] T >.
(b) Es seien nun W1, W2 und W3 Untervektorräume von V mit V = (W1 [mm] \oplus [/mm] W2) [mm] \oplus [/mm] W3. Zeigen
Sie, dass dann V = W1 [mm] \oplus [/mm] W2 [mm] \oplus [/mm] W3 gilt.
(c) Zeigen Sie, dass die Menge der Untervektorräume von V ein Monoid bzgl. der Summe”+“
von Vektorräumen bildet. Gilt das Gleiche auch für die direkte Summe [mm] \oplus [/mm] ?

Hallo zusammen,

meine Frage bezieht sich erstmal auf Aufgabenteil a)

und zwar ist <s>  definiert als [mm] \bigcup_{s
Ich hab jetzt so angesetzt: < < S >  [mm] \cup [/mm]  T > = <  [mm] \bigcup_{s
Oder kann ich das hier auch so machen, dass ich sage <s> = ( w1,.....wn) , mit wi [mm] \in [/mm] W dann hätte ich da ja stehen  << S > [mm] \cup [/mm] T > = < (w1,...wn) [mm] \cup [/mm] T>  und wie käme ich da weiter?

Danke im Voraus für die Hilfe

        
Bezug
Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Mo 22.04.2013
Autor: fred97


> Es sei K ein Körper und V ein K-Vektorraum.
>  (a) Zeigen Sie, dass für Teilmengen S, T [mm]\subseteq[/mm] V
> gilt: << S > [mm]\cup[/mm] T >=< S [mm]\cup[/mm] T >.
>  (b) Es seien nun W1, W2 und W3 Untervektorräume von V mit
> V = (W1 [mm]\oplus[/mm] W2) [mm]\oplus[/mm] W3. Zeigen
>  Sie, dass dann V = W1 [mm]\oplus[/mm] W2 [mm]\oplus[/mm] W3 gilt.
>  (c) Zeigen Sie, dass die Menge der Untervektorräume von V
> ein Monoid bzgl. der Summe”+“
>  von Vektorräumen bildet. Gilt das Gleiche auch für die
> direkte Summe [mm]\oplus[/mm] ?
>  Hallo zusammen,
>  
> meine Frage bezieht sich erstmal auf Aufgabenteil a)
>  
> und zwar ist <s>definiert als [mm]\bigcup_{s
> Untervektorraum von V sein soll.

Das ist doch Unsinn !

<S> ist die lineare Hülle von S, also der kleinste Untervektorraum von V, der S umfasst ( somit ein Schnitt (!) von Untervektorräumen !)

FRED

>  
> Ich hab jetzt so angesetzt: < < S >  [mm]\cup[/mm]  T > = <  

> [mm]\bigcup_{s
> so recht weiter, denn T soll ja auch ein Unterraum sein
> oder ?
>
> Oder kann ich das hier auch so machen, dass ich sage <s>= (
> w1,.....wn) , mit wi [mm]\in[/mm] W dann hätte ich da ja stehen  <<
> S > [mm]\cup[/mm] T > = < (w1,...wn) [mm]\cup[/mm] T>  und wie käme ich da

> weiter?
>  
> Danke im Voraus für die Hilfe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]