matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum
Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 Mi 03.12.2008
Autor: Dash

Aufgabe
Sei W ein zweidimensionaler Unterraum des dreidimensionalen Vektorraumes V und U ein eindimensionaler Unterraum, der nicht in W enthalten ist. Zeigen Sie, dass jedes Element von V/W genau ein Element aus U enthält.

Hallo,

gegeben ist ja folgendes:

W = dim 2, W [mm] \subset [/mm] V
U = dim 1, U [mm] \subset [/mm] V, U [mm] \not\subset [/mm] W

Sei x [mm] \in [/mm] U [mm] \Rightarrow [/mm] x [mm] \in [/mm] V [mm] \land [/mm] x [mm] nicht\in [/mm] W
[mm] V/W:=\{x+W\}=\{x+w|w \in W\} [/mm]

Einzigartigkeit: Sei y [mm] \in U:\{y+w|w \in W\}=\{x+w|w \in W\} [/mm] fuer gleiche w [mm] \Rightarrow [/mm] x=y [mm] \Rightarrow \exists [/mm] ! [mm] x:x+W=\{x+w|w \in W\} [/mm]

Ist dieser Beweis richtig? bzw. zulässig?

        
Bezug
Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Do 04.12.2008
Autor: angela.h.b.


> Sei W ein zweidimensionaler Unterraum des dreidimensionalen
> Vektorraumes V und U ein eindimensionaler Unterraum, der
> nicht in W enthalten ist. Zeigen Sie, dass jedes Element
> von V/W genau ein Element aus U enthält.
>  Hallo,
>  
> gegeben ist ja folgendes:
>  
> W = dim 2, W [mm]\subset[/mm] V
>  U = dim 1, U [mm]\subset[/mm] V, U [mm]\not\subset[/mm] W
>  
> Sei x [mm]\in[/mm] U [mm]\Rightarrow[/mm] x [mm]\in[/mm] V [mm]\land[/mm] x [mm]nicht\in[/mm] W
>  [mm]V/W:=\{x+W\}=\{x+w|w \in W\}[/mm]
>  
> Einzigartigkeit: Sei y [mm]\in U:\{y+w|w \in W\}=\{x+w|w \in W\}[/mm]
> fuer gleiche w [mm]\Rightarrow[/mm] x=y [mm]\Rightarrow \exists[/mm] !
> [mm]x:x+W=\{x+w|w \in W\}[/mm]
>  
> Ist dieser Beweis richtig? bzw. zulässig?

Hallo,

hat er Dich überzeugt? Mich nicht...

Es stimmt auch schon Deine Def. von V / W nicht.

>  [mm]V/W:=\{x+W\}=\{x+w|w \in W\}[/mm]

Richtig wäre das so:

[mm] V/W:=\{x+W| x\in V\} [/mm]         (also eine Menge von Mengen)

[mm] =\{\{x+w|w\in W\}| x\in V\} [/mm]   (eine Menge von Mengen)

Zeigen soll man nun ja, daß für beliebiges [mm] v\in [/mm] V in v+W  genau ein Element [mm] u\in [/mm] U enthalten ist.

Daß also eins drin ist, und zwar nur dies eine.


Bevor es losgeht, würde ich mir erstmal W und U anschauen.

Zeige erstmal, daß V= W [mm] \oplus [/mm] U.

Hieraus resultiert dann ja, daß Du jedes Element [mm] v\in [/mm] V eindeutig schreiben kannst als v=w+u mit [mm] w\in [/mm] W und [mm] u\in [/mm] U. Ich denke, daß Du diese Eigenschaft später gebrauchen kannst.

Gruß von Angela









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]