matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterräume Übung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterräume Übung
Unterräume Übung < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume Übung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Do 04.12.2008
Autor: Hav0c

Aufgabe
Aufgabe 1: Gegeben seien Unterräume U,W [mm] \subseteq [/mm] V , wobei dim(V ) = 6, dim(U) = 3,
dim(W) = 5 und außerdem U  keine [mm] \subseteq [/mm]  W.
a)  Zeigen Sie, dass U +W = V ist. Bestimmen Sie dim(U [mm] \cap [/mm] W).
b)  Betrachten wir jetzt den Fall V = [mm] R^{3}. [/mm] Ist es möglich, dass e1 und e2+e4 beide
in U [mm] \cap [/mm] W liegen? (Beispiel oder Unmöglichkeitsbeweis)

Ich hab zu dieser Aufgabe überhaupt keine Idee oder Ansätze, da ich dass thema wohl nicht verstanden habe.
zu b) was soll da e1 e2 und e4 sein?!?!? woher nehm ich das?
Ich erbitte eure Hilfe.

        
Bezug
Unterräume Übung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Do 04.12.2008
Autor: angela.h.b.


> Aufgabe 1: Gegeben seien Unterräume U,W [mm]\subseteq[/mm] V ,
> wobei dim(V ) = 6, dim(U) = 3,
>  dim(W) = 5 und außerdem U  keine [mm]\subseteq[/mm]  W.
>  a)  Zeigen Sie, dass U +W = V ist. Bestimmen Sie dim(U
> [mm]\cap[/mm] W).
>  b)  Betrachten wir jetzt den Fall V = [mm]R^{3}.[/mm] Ist es
> möglich, dass e1 und e2+e4 beide
>  in U [mm]\cap[/mm] W liegen? (Beispiel oder Unmöglichkeitsbeweis)
>  Ich hab zu dieser Aufgabe überhaupt keine Idee oder
> Ansätze, da ich dass thema wohl nicht verstanden habe.

Hallo,

wenn wir Dir helfen sollen, mußt Du konkret werden.

Was genau hast Du nicht verstanden? "Das Thema" ist weit...

An Kenntnissen wäre nötig:

- Vektorraum, Untervektorraum, Basis, Erzeugendensystem, Dimension, Basisergänzung

- wie ist U+W definiert?

- U+W ist ein VR

- [mm] U\cap [/mm] W ist ein VR

- der Satz der etwas über dim (U+W) und [mm] dim(U\cap [/mm] W) erzählt.


Am besten, Du zeigst mal, wie weit Du bei der Aufgabe kommst und formulierst ggf., woran es scheitert.


>  zu b) was soll da e1 e2 und e4 sein?!?!? woher nehm ich
> das?

Hier sind  die Einheitsvektoren gemeint. Allerdings muß es wohl [mm] V=\IR^6 [/mm] heißen statt [mm] \IR^3. [/mm] Sonst ist das ja sinnlos.

Gruß v. Angela




Bezug
                
Bezug
Unterräume Übung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 Do 04.12.2008
Autor: Hav0c

stimmt [mm] R^{6} [/mm] ist richtig,

>An Kenntnissen wäre nötig:
>
>- Vektorraum, Untervektorraum, Basis, Erzeugendensystem, Dimension, >Basisergänzung
>
>- wie ist U+W definiert?
>
>- U+W ist ein VR
>
>-  U [mm] \cap [/mm] W ist ein VR
>
>- der Satz der etwas über dim (U+W) und $ dim(U [mm] \cap [/mm] W) erzählt.

Was Basis, Erzeugendensystem ist usw. weiss ich grob, ausser Basisergänzung.
Den Rest hab ich nich im Kopf, hab das zwar  in der Mitschrift stehen, aber verstanden habe ich es nicht.

Ausser die Dimensionen weiss ich ja nix Über U,V und W ausser das U,V tilmengen sind. Warum dann U+W=V ist ist mir schleierhaft.



Bezug
                        
Bezug
Unterräume Übung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Do 04.12.2008
Autor: angela.h.b.


> stimmt [mm]R^{6}[/mm] ist richtig,
>
> >An Kenntnissen wäre nötig:
>  >
>  >- Vektorraum, Untervektorraum, Basis, Erzeugendensystem,
> Dimension, >Basisergänzung
>  >
>  >- wie ist U+W definiert?
>  >
>  >- U+W ist ein VR
>  >
>  >-  U [mm]\cap[/mm] W ist ein VR
>  >
>  >- der Satz der etwas über dim (U+W) und $ dim(U [mm]\cap[/mm] W)
> erzählt.
>
> Was Basis, Erzeugendensystem ist usw. weiss ich grob,
> ausser Basisergänzung.
>  Den Rest hab ich nich im Kopf, hab das zwar  in der
> Mitschrift stehen, aber verstanden habe ich es nicht.

Hallo,

klar, sowas bekommt man in der Vorlesung bei dem Tempo oft nicht so gut mit. Ging mir ständig so.

Das erschließt sich dann beim Nacharbeiten. Du mußt auch beim Nacharbeiten nicht gleich jeden Beweis von A-Z verstehen und reproduzieren können, aber die Definitionen und Sätze sollte man sich unbedingt klarmachen.

Wenn Du das nicht im Kopf hast und die Aufgabe lösen möchtest, muß das Skript eben Dir liegen, damit Du immer alles, was Du nicht genau weißt, sofort nachschlagen kannst.
Solange man nicht weiß, was dasteht, kann man es ja überhaupt nicht verstehen.

Wenn Du konkrete Fragen hast, können wir Dir hier sicher behilflich sein.

>  
> Ausser die Dimensionen weiss ich ja nix Über U,V und W
> ausser das U,V tilmengen sind. Warum dann U+W=V ist ist mir
> schleierhaft.

Naja, wegen der Dimensionen weißt Du aber doch ziemlich viel.
Die Dimension von W ist sehr groß, und dann gibt es da noch den unscheinbaren Hinweis, daß  [mm] U\not\subseteq [/mm] W.

Gruß v. Angela

Bezug
                                
Bezug
Unterräume Übung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:47 Do 04.12.2008
Autor: Hav0c

Ok ich führ mir das jetzt noch mal zu Gemüte und frage dann ggf. heute abend nochmal.
Danke dir.

Bezug
                                
Bezug
Unterräume Übung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Do 04.12.2008
Autor: fragemax12

hallo angela,

ich habe mich auch einmal dieser problematik gewidmet!

teil a, dürfte ich soweit haben, jedoch fällt mir zu teil b, auch nichts sinnvolles ein..

könntest du einen ansatz formulieren?

vielen dank
fragemax12

Bezug
                                        
Bezug
Unterräume Übung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Do 04.12.2008
Autor: angela.h.b.


> hallo angela,
>  
> ich habe mich auch einmal dieser problematik gewidmet!
>  
> teil a, dürfte ich soweit haben, jedoch fällt mir zu teil
> b, auch nichts sinnvolles ein..
>  
> könntest du einen ansatz formulieren?


Hallo,

[willkommenmr].

Auch wenn Du meinst, nicht viel Sinnvolles überlegt zu haben, interessieren wir uns dafür.

Manchmal fehlt nur ein kleines Detail, und manchmal erkennt man Dinge, die komplett mißverstanden wurden.
Beides ist für den, der antworten möchte, sehr hilfreich.

Du hast ja Aufgabe a), welche das Problem eher allgemein behandelt, bereits bearbeitet. Welche Dimension hat Dein Schnitt?

Ist von der errechneten Dimension des Schnittes her zu erwarten, daß es in Aufgabe b) Probleme gibt? Wenn ja, warum?
Wenn nein: wo liegt Dein Problem, an welcher Stelle der Überlegungen kommst Du nicht weiter?

Möchtest Du eigentlich lieber ein Beispiel bringen oder einen Unmöglichkeitsbeweis?

Zum Unmöglichkeitsbeweis: formuliere mal in Worten, warum Du es für unmöglich hältst.

Zum Beispiel:  hier könntest Du ausgehend von einer Basis des Schnittes Basen der Räume U und W aufbauen.

Gruß v. Angela

Bezug
        
Bezug
Unterräume Übung: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 18:50 Do 04.12.2008
Autor: Lenchen89

Aufgabe
Gegeben seien Unterräume U,W [mm] \subseteq [/mm] V , wobei dim (V)=6, dim (U)=3, dim (W)=5 und außerdem U keine Teilmenge von W.
a) Zeigen Sie, dass U+W=V ist. Bestimmen Sie dim (U [mm] \cap [/mm] W).
b) Betrachten wir jetzt den Fall V = [mm] \IR [/mm] ^{6} . Ist es möglich, dass [mm] e_{1} [/mm] und [mm] e_{2} [/mm] + [mm] e_{4} [/mm] beide in U [mm] \cap [/mm] W liegen ? (Beispiel oder Unmöglichkeitsbeweis)

zu a) die Summe von U + W ist ja nicht direkt, weil dim (U) + dim (W)  ist nicht dim (V). Wie kann ich dann anhand der Dimension beweisen, dass U+W=V - oder brauche ich die Dimension garnicht dafür ?
Die Dimension des Schnittes ist 2 oder ? Da wenn U+W=V gilt,
dann: dim (V) = dim (U) + dim (W) - dim (U [mm] \cap [/mm] W)

zu b) wenn [mm] e_{1} \in [/mm] U [mm] \cap [/mm] W , kann dann [mm] e_{2} [/mm] + [mm] e_{4} [/mm] überhaupt noch [mm] \in [/mm] des Schnittes sein ??? weil dim (U [mm] \cap [/mm] W) = "nur" 2 (wenn das bei a stimmt)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                
Bezug
Unterräume Übung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Do 04.12.2008
Autor: angela.h.b.


> Gegeben seien Unterräume U,W [mm]\subseteq[/mm] V , wobei dim (V)=6,
> dim (U)=3, dim (W)=5 und außerdem U keine Teilmenge von W.
>  a) Zeigen Sie, dass U+W=V ist. Bestimmen Sie dim (U [mm]\cap[/mm]
> W).
>  b) Betrachten wir jetzt den Fall V = [mm]\IR[/mm] ^{6} . Ist es
> möglich, dass [mm]e_{1}[/mm] und [mm]e_{2}[/mm] + [mm]e_{4}[/mm] beide in U [mm]\cap[/mm] W
> liegen ? (Beispiel oder Unmöglichkeitsbeweis)
>  zu a) die Summe von U + W ist ja nicht direkt, weil dim
> (U) + dim (W)  ist nicht dim (V). Wie kann ich dann anhand
> der Dimension beweisen, dass U+W=V - oder brauche ich die
> Dimension garnicht dafür ?

Hallo,

doch, die Dimensionen brauchst Du.

Es hat W ja die Dimension 5, und dann steht da noch, daß U keine Teilmenge von W ist. das mußt Du ausreizen.

>  Die Dimension des Schnittes ist 2 oder ?

Ja.
  

> zu b) wenn [mm]e_{1} \in[/mm] U [mm]\cap[/mm] W , kann dann [mm]e_{2}[/mm] + [mm]e_{4}[/mm]
> überhaupt noch [mm]\in[/mm] des Schnittes sein ??? weil dim (U [mm]\cap[/mm]
> W) = "nur" 2 (wenn das bei a stimmt)

Die Dimension des Schnittes muß 2 sein, das ist richtig.

Aber das muß Dich doch nicht belasten, jedenfalls ist es kein Hinderungsgrund dafür, daß die beiden Vektoren [mm] e_{1} [/mm] und [mm] e_{2}+ e_{4} [/mm] auch im Schnitt liegen.
Du mußt dann bloß den Rest passend einfädeln.
Bau ausgehend von einer Basis des Schnittes Basen von W und U auf, die das geforderte machen.

Gruß v. Angela

Bezug
                        
Bezug
Unterräume Übung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Do 04.12.2008
Autor: fragemax12

danke für die instruktion,werde in zukunft so verfahren. nun aber aus zeitlichen gründen nicht intensiv darauf eingehen.

die dimension des schnittes habe ich auch rausgefunden.

zu b) werde mich,wenn ich nach etlichen stunden eher erfolglosen mathematikbemühungen, noch dazu quälen kann,den versuch starten eine solche basis zu konstruieren...

ich befürchte jedoch,dass mein ego,seelischer zustand und die tatsache,dass
ich hunger habe und bald "gzsz" kommt- jegliche anstalten zu nichte machen werden ^^

Bezug
                        
Bezug
Unterräume Übung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:44 Do 04.12.2008
Autor: Lenchen89

okay dankeschön erstmal.
bei b) muss ich nochmal ein bisschen grübeln. Da fällt mir spontan kein Beispiel ein.

zu a)
da U, W [mm] \subseteq [/mm] V und U keine Teilmenge von W,
dim (W) aber schon 5 ist dann könnte U+V=W nur dann nicht gelten, wenn dim (U)=0 und bei dim (U)=1 würde schon gelten U [mm] \oplus [/mm] V=W.
dim (U)=3 > dim =1 deshalb "nur" U+W=V als keine direkte Summe.

Bezug
                                
Bezug
Unterräume Übung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Do 04.12.2008
Autor: angela.h.b.


> okay dankeschön erstmal.
>  bei b) muss ich nochmal ein bisschen grübeln. Da fällt mir
> spontan kein Beispiel ein.
>  
> zu a)
>  da U, W [mm]\subseteq[/mm] V und U keine Teilmenge von W,
>  dim (W) aber schon 5 ist dann könnte U+V=W nur dann nicht
> gelten, wenn dim (U)=0 und bei dim (U)=1 würde schon gelten
> U [mm]\oplus[/mm] V=W.
>  dim (U)=3 > dim =1 deshalb "nur" U+W=V als keine direkte

> Summe.

Hallo,

das, was Du schreibst, stimmt zwar durchaus, aber

Du mußt für die Abgabe ganz deutlich herausarbeiten, warum es in U einen Vektor gibt, mit welchem  Du die Basis von W zu einer von V ergänzen kannst - oder irgendwas in der Richtung.

"bei dim (U)=1 würde schon gelten " muß gut begründet werden. das ist der Hauptpunkt der Aufgabe.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]