matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenUnterräume nachweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Unterräume nachweisen
Unterräume nachweisen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Do 08.03.2012
Autor: racy90

Hallo

ich soll  für ein paar Mengen überprüfen ob sie Unterräume sind.

[mm] {(x_1,x_2,x_3)^T \in \IR : x_1=x_2} [/mm]  erfüllt für mich die Axiome

[mm] {(x_1,x_2,x_3)^T \in \IR : x_1/2+x_3/2=x_2/4} [/mm] ebenfalls

[mm] {(x_1,x_2,x_3)^T \in \IR : x_1^2+x_2^2=x_3^2} [/mm]  ich denke auch hier handelt es sich um einen Unterraum

[mm] {(x_1,x_2,x_3,x_4)^T \in \IR : genau 2 Koordinaten sind negativ} [/mm] hab keine Ahnung :/

[mm] {(\mu+\lambda,\lambda^2)^T \in \IR : \mu,\lambda \in \IR} [/mm] leider weiß ich auch hier nicht was gemeint ist

Ich hoffe meine Vermutungen stimmen

[mm] {(x_1,x_2,x_3)^T \in \IR : x_1=x_2} [/mm]

        
Bezug
Unterräume nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Do 08.03.2012
Autor: Marcel

Hallo,

> Hallo
>  
> ich soll  für ein paar Mengen überprüfen ob sie
> Unterräume sind.

vorweg: Wenn Du Mengenklammern [mm] $\{\}$ [/mm] schreiben willst, dann so: [mm] [nomm]$\{\}$[/nomm]: [/mm]

>  
> [mm]\{(x_1,x_2,x_3)^T \in \IR^{\red{3}} : x_1=x_2\}[/mm]  erfüllt für mich die
> Axiome

Für mich auch! Kannst Du es denn auch beweisen?
  

> [mm]\{(x_1,x_2,x_3)^T \in \IR^{\red{3}} : x_1/2+x_3/2=x_2/4\}[/mm] ebenfalls

Für mich auch. Das sieht man sogar noch "schneller", wenn man die Menge schreibt als

    [mm] $\{x=(x_1,x_2,x_3)^T \in \IR^3:\;<(x_1,\;x_2,\;x_3)^T,(1/2,\;-1/4,\;1/2)^T>\;=\;0\}\,.$ [/mm]


Dabei ist $<.,.>$ das Standardskalarprodukt des [mm] $\IR^3\,.$ [/mm] Man sieht hier, dass das eine Ursprungsebene des [mm] $\IR^3$ [/mm] ist - und man kann einen Normalenvektor dieser ablesen!
  

> [mm]\{(x_1,x_2,x_3)^T \in \IR : x_1^2+x_2^2=x_3^2\}[/mm]  ich denke
> auch hier handelt es sich um einen Unterraum

Das bezweifle ich: [mm] $(3,4,5)^T$ [/mm] liegt in der Menge (nebenbei: dieses Tripel ist "standardmäßiges Bsp. bei Pythagoras"). Auch [mm] $(1,0,1)^T\,.$ [/mm] Was ist aber mit [mm] $(3,4,5)^T+(1,0,1)^T=(4,4,6)^T$? [/mm] Gilt [mm] $4^2+4^2=6^2$?? [/mm]

(Alternativ: Betrachte etwa [mm] $(1,0,1)^T$ [/mm] und [mm] $(1,0,-1)^T$!) [/mm]
  

> [mm]\{(x_1,x_2,x_3,x_4)^T \in \IR^{\red{4}} : \text{genau }2 \text{ Koordinaten sind negativ}\}[/mm]
> hab keine Ahnung :/

Wenn negativ im Sinne von echt negativ gemeint ist, ist es einfach: Gehört der Nullvektor zu der Menge?
Wenn es im Sinne von NICHT ECHT POSITIV gemeint ist:
Addiere mal die Vektoren [mm] $(-1,-1,2,2)^T$ [/mm] und [mm] $(3,3,-1,-1)^T\,,$ [/mm] die beide zur Menge gehören!
  

> [mm]\{(\mu+\lambda,\lambda^2)^T \in \IR^{\red{2}} : \mu,\lambda \in \IR\}[/mm]
> leider weiß ich auch hier nicht was gemeint ist

Ein Vektor [mm] $(x_1,x_2)^T$ [/mm] gehört genau dann zur Menge, wenn es zwei Zahlen [mm] $\lambda,\mu \in \IR$ [/mm] so gibt, dass [mm] $x_1=\mu+\lambda$ [/mm] und [mm] $x_2=\lambda^2\,.$ [/mm]
Mit [mm] $\mu=\lambda=0$ [/mm] folgt, dass [mm] $(0,0)^T$ [/mm] in der Menge liegt. ABER:
Betrachte [mm] $(1,1)^T\,.$ [/mm] Dieser Vektor gehört zur Menge (setze etwa [mm] $(\mu,\lambda):=(0,1)$ [/mm] - auch [mm] $(\mu,\lambda):=(2,-1)$ [/mm] würde gehen).
  
Nun berechne ich [mm] $-1*(1,1)^T=(-1,-1)^T\,.$ [/mm] Würde dieser Vektor zu der Menge gehören, so müsste es also insbesondere ein [mm] $\tilde{\lambda} \in \IR$ [/mm] geben, so dass [mm] $\tilde{\lambda}^2=-1\,.$ [/mm] Also?

Gruß,
Marcel

Bezug
                
Bezug
Unterräume nachweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 Do 08.03.2012
Autor: racy90

ja gewiesen hab ich auf meinen Zettel ,war mir nur so lang um alles abzutippen.Bei Menge 3 hab ich wohl zu ungenau geschaut

Die anderen 2 Mengen sind toll erklärt ,danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]