matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenUnterräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Unterräume
Unterräume < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Span
Status: (Frage) beantwortet Status 
Datum: 15:09 Mo 15.12.2008
Autor: dr_geissler

Aufgabe
Gegeben seien die Unterräume

[mm] U\U_{1} [/mm] = Span {(0,1,2),(1,1,1),(3,5,7)},
[mm] U\U_{2} [/mm] = Span {(1,1,0),(-1,2,2),(-2-13-10),(2,-1,-2)}

des [mm] \IR³. [/mm] Bestimmen sie jeweils die Dimension und die Basis von [mm] U\U_{1},U\U_{2},U\U_{1}\cap U\U_{2} [/mm] sowie [mm] U\U_{1}+U\U_{2}. [/mm]

Hallo,

ich hab so meine Theroie, wie ich die Aufgabe lösen kann, bin aber von diesem Span ein wenig irritiert.

Die Vektoren von [mm] U\U_{1} [/mm] sind linear unabhängig. Kann ich dann nicht einfach sagen, dass die Dimension 3 ist und [mm] v\U_{1}=(0,1,2),v\U_{2}=(1,1,1),v\U_{3}=(3,5,7) [/mm] die Basisvektoren sind??
Oder muss ich wegen dem Span etwas besonderes beachten ???


Vielen Dank
DIRK

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Mo 15.12.2008
Autor: barsch

Hi Dirk,

> Gegeben seien die Unterräume
>  
> [mm]U\U_{1}[/mm] = Span {(0,1,2),(1,1,1),(3,5,7)},
>  [mm]U\U_{2}[/mm] = Span {(1,1,0),(-1,2,2),(-2-13-10),(2,-1,-2)}
>  
> des [mm]\IR³.[/mm] Bestimmen sie jeweils die Dimension und die Basis
> von [mm]U\U_{1},U\U_{2},U\U_{1}\cap U\U_{2}[/mm] sowie
> [mm]U\U_{1}+U\U_{2}.[/mm]
>  Hallo,
>  
> ich hab so meine Theroie, wie ich die Aufgabe lösen kann,
> bin aber von diesem Span ein wenig irritiert.

Span meint die Menge aller Linearkombinationen, die du aus den Vektoren dieser Menge bilden kannst, z.B. ist

[mm] U_{1}:=Span [/mm] {(0,1,2),(1,1,1),(3,5,7)} und somit

[mm] \lambda_1\cdot{(0,1,2)}+\lambda_2*(1,1,1)+\lambda_3*(3,5,7)\in{U_{1}} \forall \lambda_1,\lambda_2,\lambda_3\in\IR. [/mm]

Z.B.: [mm] \lambda_1=\lambda_2=\lambda_3=1 [/mm]

[mm] 1\cdot{(0,1,2)}+1*(1,1,1)+1*(3,5,7)\in{U_{1}},... [/mm]


> Die Vektoren von [mm]U\U_{1}[/mm] sind linear unabhängig. Kann ich
> dann nicht einfach sagen, dass die Dimension 3 ist und
> [mm]v\U_{1}=(0,1,2),v\U_{2}=(1,1,1),v\U_{3}=(3,5,7)[/mm] die
> Basisvektoren sind??

Sofern du gezeigt hast, dass [mm] v_{1}=(0,1,2),v_{2}=(1,1,1),v_{3}=(3,5,7) [/mm] linear unabhängig sind, kannst du das so schreiben. Du weißt ja, dass drei linear unabhängige Vektoren [mm] v_i\in\IR^3 [/mm] i=1,2,3 eine Basis des [mm] \IR^3 [/mm] bilden.

>  Oder muss ich wegen dem Span etwas besonderes beachten
> ???

Nein.
  
MfG barsch

Bezug
                
Bezug
Unterräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Mo 15.12.2008
Autor: dr_geissler

Vielen Dank für Deine Antwort.

Ich hab allerdings beim Nachrechnen gesehen, dass sie nicht linear unabhängig sind. Aber von hier aus kann ich das weiter händeln.



Bezug
                
Bezug
Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mo 15.12.2008
Autor: dr_geissler

Noch eine Kleinigkeit.


Ich habe herausgefunden, dass (3,5,7) = 2(0,1,2)+3(1,1,1) ist. Also sind die linear abhängig.

(0,1,2) und (1,1,1) sind aber linear unabhängig.

Demnach ist die Dimension von [mm] U\U_{1} [/mm] = 2
Ist dann (0,1,2) und (1,1,1) auch die Basis ?? Oder geht das nicht wegen der Dimension ??


Danke schonmal

Bezug
                        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Mo 15.12.2008
Autor: fred97


> Noch eine Kleinigkeit.
>  
>
> Ich habe herausgefunden, dass (3,5,7) = 2(0,1,2)+3(1,1,1)
> ist. Also sind die linear abhängig.
>  
> (0,1,2) und (1,1,1) sind aber linear unabhängig.
>  
> Demnach ist die Dimension von [mm]U\U_{1}[/mm] = 2
>  Ist dann (0,1,2) und (1,1,1) auch die Basis ??


Ja

FRED

>Oder geht

> das nicht wegen der Dimension ??
>  
>
> Danke schonmal


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]