matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenUntermannigfaltigkeiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Untermannigfaltigkeiten
Untermannigfaltigkeiten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeiten: Erklärung
Status: (Frage) überfällig Status 
Datum: 20:11 Mo 07.12.2009
Autor: bobobanane

Aufgabe
Zeige, dass die Eiheitssphäre in [mm] R^3 S^2:={(x_{1},x_{2},x_{3})|x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1} [/mm] eine [mm] C^{1}-Untermannigfaltigkeit [/mm] der Dimension zwei ist.
Zeige, dass die Beiden Abbildungen [mm] Phi_{N,S}:R^{2} [/mm] nach [mm] R^{3}, [/mm]
[mm] Phi_{N}(x_{1},x_{2})=2/(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}) (x_{1},x_{2},-1)+(0,0,1). [/mm]
[mm] Phi_{S}(x_{1},x_{2})=2/(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}) (x_{1},x_{2},1)+(0,0,-1). [/mm]
einen Atlas Bilden.

Diese Aufgabe wurde bei uns in der Vorlesung vorgerechnet, leider war ich an dem Tag nicht da und die Mitschriften meiner Komilitonen helfen mir da leider auch nicht weiter.
Ich weiß, dass ich für den Nachwei einer Untermannigfaltigkeit einen Homoömorphismus zwischen allen offenen Umgebungen von [mm] S^{2} [/mm] und [mm] R^{3} [/mm] finden muss. Diese werden wahrscheinlich die Phis sein.
Aber ich habe keine Ahnung was ein Atlas sein soll.
Kann mir jemand zweigen wie man das alles sauber aufschreibt?

Danke im Voraus
Bobo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Untermannigfaltigkeiten: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 11.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]