matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenUntergruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Untergruppen
Untergruppen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen: Idee
Status: (Frage) beantwortet Status 
Datum: 17:43 Do 05.11.2009
Autor: Ayame

also ich weiß dass U eine Teilmenge von (G,*) ist.
ich woll jetzt beweisen dass U auch eine Untergruppe von G ist.

[mm] u\in [/mm] U  und [mm] u_{1} [/mm] * [mm] u_{2} [/mm] = u

oder anders ausgedrückt wenn [mm] a,b\in [/mm] U dann [mm] a*b\in [/mm] U

Und jetzt kommt meine Aufgabe :
ich soll beweisen dass wenn a,b [mm] \in [/mm] U dann ist auch [mm] a*b^{-1} \in [/mm] U

dabei soll [mm] b^{-1} [/mm] das inverse zu b sein.


Könnte mir einer einen ansatz geben ?

        
Bezug
Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:17 Sa 07.11.2009
Autor: angela.h.b.


> also ich weiß dass U eine Teilmenge von (G,*) ist.
> ich woll jetzt beweisen dass U auch eine Untergruppe von G
> ist.
>  
> [mm]u\in[/mm] U  und [mm]u_{1}[/mm] * [mm]u_{2}[/mm] = u
>  
> oder anders ausgedrückt wenn [mm]a,b\in[/mm] U dann [mm]a*b\in[/mm] U
>  
> Und jetzt kommt meine Aufgabe :
> ich soll beweisen dass wenn a,b [mm]\in[/mm] U dann ist auch
> [mm]a*b^{-1} \in[/mm] U
>  
> dabei soll [mm]b^{-1}[/mm] das inverse zu b sein.
>  
>
> Könnte mir einer einen ansatz geben ?

Hallo,

irgendwie ist das Kraut und Rüben, was Du hier schreibst.

Poste immer die Originalaufgabe, erst danach Deine Interpretationen.

Ich vermute mal, Du solltest irgendwie sowas ähnliches zeigen:

U Untergruppe von [mm] (G,\*). [/mm]
Dann gilt :  [mm] a,b\in [/mm] U  ==> [mm] a*b^{-1}\in [/mm] U.

Beweis: seien a,b [mm] \in [/mm] U.

1. [mm] b^{-1} [/mm] ist in U, denn  ???

2. [mm] a*b^{-1}\in [/mm] U, denn ???

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]