matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieUniverselle Überlagerung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Topologie und Geometrie" - Universelle Überlagerung
Universelle Überlagerung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Universelle Überlagerung: Idee
Status: (Frage) beantwortet Status 
Datum: 20:05 Do 04.06.2015
Autor: quizzle123

Aufgabe
Sei X = X_1\cup X_2 mit
X_1 = \{(x_1, x_2, 0) \in \mathbb{R}^3; ||(x_1+1, x_2, 0)|| = 1 \},
X_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3; ||(x_1-1, x_2, x_3)|| = 1 \}.
Geben Sie eine universelle Überlagerung \pi:\tilde{X} \rightarrow X mit X\subseteq\mathbb{R}^3 explizit an. Erklären Sie anhand einer Skizee, warum man sich \tilde{X} als unendliche Lampionkette vorstellen kann.

Hallo,
also X ist die Vereinigung einer 2-dim. Sphäre und eines Kreises, die sich in einem Punkt treffen. Meine wage Idee ist, dass die Überlagerung eines Kreises durch \mathbb{R} und die der Sphäre, durch die Sphäre selbst gegeben ist. Daher kann man sich \tilde{X} als unendliche Lampionkette vorstellen. Ist sehr informal, ich weiß... Aber ist die Idee soweit richtig?

Ich komm leider nicht weiter, an der Stelle, an der ich die universelle Überlagerung explizit angeben soll. Nach dem Existenzsatz besitzt ein wegzusammenhängender, lokal wegzusammenhängender und semi-lokal einfach zusammenhängender Raum eine universelle Überlagerung. Dabei kann man diese konstruieren, indem man zu einem Punkt x_0 die Homotopieklassen der Wege mit Anfangspunkt x_0 betrachtet. Wie komme ich denn jetzt auf eine explizite Darstellung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Viele liebe Grüße,
quizzle123

        
Bezug
Universelle Überlagerung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Fr 05.06.2015
Autor: leduart

Hallo
das erste Objekt ist kein Kreis, sondern ein Zylinder, dessen universelle Vereinigung ist eine Ebene. das zweite ist eine Kugel, u.V eine Kugel.
wenn du den Berührpunkt in der Ebene an siehst wiederholt er sich, vereinigt mit der kugel gibt das die Lampionkette
alle geschlossenen Kurven nur auf der Kugel  kann man zusammenziehen, alle in der ebene auch, geschlossene Kurven durch den Berührpunkt musst du einzeln behandeln, der punkt ist dann ein Doppelpunkt und du kannst aufschneiden und zusammenziehen. Das ist aber alles nur qualitativ, vielleicht kann es jemand anders besser, drum nur halb beantwortet.
Gruß ledum

Bezug
                
Bezug
Universelle Überlagerung: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 16:20 Fr 05.06.2015
Autor: Ladon

Es tut mir Leid, aber ich kann nicht nachvollziehen, wie du darauf kommst, [mm] X_1 [/mm] sei ein Zylinder. [mm] X_1 [/mm] ist sicherlich eine im [mm] \IR^3 [/mm] eingebettete und verschobene [mm] S^1. [/mm]
[mm] X_2 [/mm] sollte eine verschobene [mm] S^2 [/mm] sein.
[mm] X_1 [/mm] und [mm] X_2 [/mm] sind gerade so verschoben, dass $ [mm] X=X_1\cup X_2$ [/mm] zu [mm] S^1\vee S^2 [/mm] homöomorph ist.
Oder verstehe ich dich gerade falsch...

Viele Grüße
Ladon

Bezug
        
Bezug
Universelle Überlagerung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Fr 05.06.2015
Autor: Ladon

Hallo,

es ist wohl $ [mm] X\cong S^2\vee S^1$. [/mm] Offensichtlich gibt es eine Überlagerung [mm] \sqcup_\alpha S^2_\alpha\to S^2, [/mm] wobei die [mm] S^2_\alpha [/mm] Kopien von [mm] S^2 [/mm] sind. Ebenso sollte dir die universelle Überlagerung von [mm] S^1 [/mm] bekannt sein.
Wir kleben jetzt die [mm] S^2'en [/mm] als Wedge-Summe an [mm] \IR [/mm] vermöge
[mm] $$\overline {X}=\frac {\IR\sqcup\sqcup_{\alpha\in\IZ} S^2_\alpha}{\IR\supseteq\IZ\ni \alpha=(0,1,0)\in S^2_\alpha} [/mm] $$
Was meine ich mit der komischen Identifikation?
Wir identifizieren hierbei einfach jedes ganzzahlige [mm] x\in\IR [/mm] mit einem Punkt der [mm] S^2'en. [/mm] Dadurch kleben wir quasi an jeder ganzzahligen Stelle in [mm] \IR [/mm] eine [mm] S^2. [/mm]
Jetzt musst du nur noch zeigen, dass die Überlagerung [mm] $p:\overline {X}\to S^2\vee S^1$ [/mm]
[mm] $$z\mapsto \begin{cases} e^{i2\pi x}\mbox { für } z\in\IR/\sim\\ z\mbox { für } z\in \sqcup_{\alpha\in\IZ} S^2_\alpha/\sim\end{cases} [/mm] $$
eine Überlagerung ist und dass [mm] \overline{X} [/mm] triviale Fundamentalgruppe hat, wobei [mm] \sim [/mm] obige Identifikation meint. Dass [mm] \overline{X} [/mm] triviale Fundamentalgruppe hat ist nur Intuition und daher mit Vorsicht zu genießen.  ;-)
Mit Seifert-van Kampen kannst du die Behauptung vielleicht beweisen.
Meine Idee ist, dass Schleifen auf den [mm] S^2'en [/mm] zu dem Punkt homotop sind, der mit einem entsprechenden ganzzahligen Punkt in [mm] \IR [/mm] identifiziert wird. Damit kann man jede Schleife auf eine Schleife in [mm] \IR [/mm] zurückführen. Aber jede Schleife in [mm] \IR [/mm] ist homotop zur konstanten Schleife z.B. im Punkt 0, denn [mm] \IR [/mm] hat eine triviale Fundamentalgruppe.
Beachte, dass $$ [mm] S^2\vee S^1:=\frac{S^2\sqcup S^1}{S^2\ni (0,1,0)=(-1,0)\in S^1} [/mm] $$

MfG
Ladon

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]