matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUngleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Ungleichungen
Ungleichungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Fallunterscheidung
Status: (Frage) beantwortet Status 
Datum: 16:29 So 16.01.2005
Autor: moebak

Hallo,

Ich habe folgende Ungleichung, für die ich die Lösungsmange bestimmen soll:
[mm] \wurzel{(x-1)} [/mm] >1/2 |x|

Die Lösungsmenge wäre L:{(- [mm] \infty,2/3) [/mm] U (2, [mm] \infty)} [/mm]

Ich verstehe allerdings nicht wie bei der zweiten Fallunterscheidung
für 0<x<1 auf folgende Weise gerechnet werden kann:
1-x > 1/2 x  ( da fängts bei mir schon an zu hapern, wie ist die Umformung auf "1-x" gelangt???)

PS. Ich habe mir hier den ganzen Schreibkram mit den Fallunterscheidungen erspart, falls es Unklarheiten geben sollte, dass gibt mir bescheid.

Danke im Voraus

        
Bezug
Ungleichungen: Betrag unter der Wurzel ??
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 So 16.01.2005
Autor: Loddar

Hallo moebak,

kann es sein, daß unter der Wurzel auch Betragsstriche (und keine Klammern) stehen?

Sieht die Aufgabenstellung vielleicht so aus: [mm] $\wurzel{|x-1|} [/mm] > [mm] \bruch{1}{2}*|x|$ [/mm] ??


Bei Deiner Schreibweise ergibt sich nämlich kein wirklicher Sinn [meinemeinung]:
Der Definitionsbereich (wegen Wurzel) wäre festgelegt zu:
[mm] $D_x [/mm] = [mm] \{x \in \IR \;| \; x\ge1\}$ [/mm]

Alle x-Werte wären [mm] $\ge [/mm] 1$ und damit natürlich auch > 0, womit die Betragsstriche auf der rechten Seite hinfällig wären.


Grüße
Loddar


Bezug
        
Bezug
Ungleichungen: du hast recht, aber.....
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 So 16.01.2005
Autor: moebak

Hallo nochmal,
sorry mir ist da ein Fehler unterlaufen, richtig heisst die Ungleichung so: [mm] \wurzel{(x-1)^{2}}>1/2 [/mm] |x|
jetzt müssts aber gehen.

Gruß
moebak

Bezug
        
Bezug
Ungleichungen: Tipp
Status: (Antwort) fertig Status 
Datum: 18:10 So 16.01.2005
Autor: leduart

Hallo
hilft dir dass 1. [mm] (x-1)^{2} [/mm] = [mm] (1-x)^{2} [/mm]
                   2.  [mm] \wurzel{ } [/mm] immer positiv gemeint ist
                    
damit ist 3.   [mm] \wurzel{x-1)^{2}} [/mm] = 1-x für x<1    x-1 für x >1
| x | =x    für x>0  0-x für x<0

Damit kommst du jetzt vielleich selbst zu Ende
Gruss leduart

Bezug
        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Mo 17.01.2005
Autor: Paulus

Liebe Malika

[willkommenmr]

Also, zum Ersten: Es gilt:

[mm] $\wurzel{a^2}=|a|$ [/mm]

Damit wird deine Ungleichung zu:

$|x-1|< [mm] \bruch{|x|}{2}$ [/mm]

Zum Zweiten: Es gilt:

$|a| = -a$ für $a < 0_$
$|a| = a$ für $a [mm] \ge [/mm] 0_$

Jetzt zu deiner Frage:

Für $0 [mm] \le [/mm] x < 1$ ist ja $(x-1) < 0$, deshalb gilt in diesem Bereich (nach dem Zweiten):

$|x-1|=-(x-1)_$

oder eben
$|x-1|=-x+1_$

somit:
$|x-1|=1-x_$


Weil in diesem Bereich aber $x [mm] \ge [/mm] 0_$ ist, gilt hier:
$|x|=x_$


Damit wird deine Ungleichung in diesem Bereich

$1-x > [mm] \bruch{x}{2}$ [/mm]

So, liebe Malika, ich hoffe, damit sei einiges klarer geworden. :-)

Gibst du mir ein entsprechendes Feedback?

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]