Ungleichung mit Tschebyscheff < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:31 Sa 30.04.2011 | Autor: | shadee |
Aufgabe | Sei p(x) [mm] \in Span\{1,x,...,x^{n-1}\}, [/mm] sodass max [mm] |x^n [/mm] - p(x) | [mm] \le \bruch{1}{2^{n-1}}. [/mm] Zeigen Sie, dass diese Ungleichung gilt. |
Uns wurde als Hilfestellung mitgegeben, dass die Rekursion für die Tschebyscheff-Polynome gegeben ist durch [mm] T_0(x) [/mm] = 1, [mm] T_1(x) [/mm] = x, [mm] T_n(x) [/mm] = [mm] 2xT_{n-1}(x) [/mm] - [mm] T_{n-2}(x) [/mm] und, dass | [mm] T_{n}(x) [/mm] | [mm] \le [/mm] 1 [mm] \forall [/mm] x [mm] \in [/mm] [-1,1]. Es wird generell nur das Interval von -1 bis 1 betrachtet.
Die Hilfestellung suggeriert, dass ein solches Polynom eben das (n-1)-te Tschebyscheff-Polynom wäre. Aber ich hab das mal nach gerechnet, das kanns aber nicht sein, da ich zum Teil auf Monsterbeträge komme für n >>
Nun steh ich aber auf dem Schlauch. Für kleine n kann man sich vielleich was überlegen, aber wie soll ich ein Polynom für n >> angeben, sodass die Ungleichung erfüllt ist? Hab auch eigene Ansätze, aber die gehen Richtung T-Polynome und sind daher unbrauchbar (befürchte ich).
Grüße shadee
|
|
|
|
> Sei p(x) [mm]\in Span\{1,x,...,x^{n-1}\},[/mm] sodass max [mm]|x^n[/mm] - p(x) | [mm]\le \bruch{1}{2^{n-1}}.[/mm]
> Zeigen Sie, dass diese
> Ungleichung gilt.
Hallo,
ich verstehe diese Aufgabenstellung nicht - vielleicht war ich auch nur zu lange in der Sonne heute.
Ich sehe aber nicht die Ungleichung, die man unter diesen Voraussetzungen zeigen soll.
Wie war denn die Aufgabenstellung im O-Ton?
Gruß v. Angela
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:21 Sa 30.04.2011 | Autor: | shadee |
Aufgabenstellung war, dass man ein Polynom angeben soll, für dass diese Ungleichung erfüllt ist, da man ja nur zeigen muss, dass sie erfüllbar ist und nicht allgemeingültig.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Mo 02.05.2011 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|