matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichung beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Ungleichung beweisen
Ungleichung beweisen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Mo 07.05.2012
Autor: Ganz

Hallo, folgendes soll ich lösen:
Seien x1,x2,...,xn [mm] \ge \bruch{1}{4} [/mm] und a reelle Zahlen mit x1+x2+..xn=a.
Zeigen sie [mm] \summe_{i=1}^{n} (\wurzel{x_{i}}+xi^{2})\ge\wurzel{an}+\bruch{a^{2}}{n} [/mm]
Also eigentlich dachte ich an vollst. Induktion nur leider sind die x keine natürlichen Zahlen und mit nach unten oder oben abschätzen kriege ich das auch nicht hin, sodass mir ein Ansatz schon fehlt. Komilitonen habe gesagt, dass man dafür die Konvexität benutzen soll, nur weiß ich nicht wann und wie.
Hoffe auf hilfe
Gruß

        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Mo 07.05.2012
Autor: chrisno

Da steht ein n. Fang mal an mit n = 1.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]