matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichung beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Ungleichung beweisen
Ungleichung beweisen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung beweisen: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:05 So 27.07.2008
Autor: jokerose

Aufgabe
Es sei f: [mm] (-\bruch{\pi}{2} [/mm] , [mm] \bruch{\pi}{2}) \to \IR, [/mm] f(x) := -ln(cos(x)).

Zeige, dass |f(x) - [mm] \bruch{x^2}{2}| \le \bruch{2}{3} [/mm] * [mm] |x|^{3}, [/mm] x [mm] \in [-\bruch{\pi}{4} [/mm] , [mm] \bruch{\pi}{4}] [/mm]

Wie kann dies gezeigt werden?
Ich habs bereits mit Abschätzungen gegen oben versucht, aber ohne Erfolg, denn f(x) geht ja gegen [mm] \infty [/mm] wenn x gegen [mm] \pm\bruch{\pi}{2} [/mm] geht...


        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 So 27.07.2008
Autor: Somebody


> Es sei f: [mm](-\bruch{\pi}{2}[/mm] , [mm]\bruch{\pi}{2}) \to \IR,[/mm] f(x)
> := -ln(cos(x)).
>  
> Zeige, dass [mm]|f(x) - \bruch{x^2}{2}| \le \bruch{2}{3} * |x|^{3}, x \in [-\bruch{\pi}{4} , \bruch{\pi}{4}][/mm]
>  Wie kann dies gezeigt werden?
>  Ich habs bereits mit Abschätzungen

Welche Art von Abschätzungen?

> gegen oben versucht,
> aber ohne Erfolg, denn f(x) geht ja gegen [mm]\infty[/mm] wenn x
> gegen [mm]\pm\bruch{\pi}{2}[/mm] geht...

Schon, aber das Intervall, auf dem diese Ungleichung gelten soll, ist ja nur [mm] $[-\pi/4;+\pi/4]$, [/mm] nicht etwa [mm] $[-\pi/2;+\pi/2]$. [/mm]

Vielleicht kannst Du für diesen Beweis eine Taylorentwicklung von $f$ verwenden. Bei einer Taylorentwicklung kannst Du ja den maximalen Fehler in diesem Intervall [mm] $[-\pi/4;+\pi/4]$ [/mm] abschätzen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]