matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUngleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Ungleichung
Ungleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 So 04.12.2005
Autor: Angie

Hi,

ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich muss zeigen, dass für alle n [mm] \in \IN [/mm] und x [mm] \in \IR [/mm] mit 1 < x gilt:  [mm] \wurzel[n]{x} \le [/mm] x.
Habe es mit vollständiger Induktion versucht:
[mm] \wurzel[n]{x} \le [/mm] x [mm] \gdw [/mm] x [mm] \le x^{n} [/mm]

Induktionsverankerung:
x [mm] \le x^{1} [/mm] = x

Induktionsannahme:
x [mm] \le x^{n} [/mm]

Induktionsbehauptung:
x [mm] \le x^{n+1} [/mm]

Induktionsschritt:
[mm] x^{n+1}=x^{n}*x [/mm]
Also: x [mm] \le [/mm] x und nach Induktionsannahme gilt: x [mm] \le x^{n} [/mm] also gilt:
[mm] x^{n+1}>x [/mm]

Kann das so stimmen oder habe ich beim ersten Schritt schon Fehler gemacht?
Danke schonmal!

        
Bezug
Ungleichung: Induktionsschritt
Status: (Antwort) fertig Status 
Datum: 12:37 So 04.12.2005
Autor: Loddar

Hallo Angie,

[willkommenmr] !!


Dein Induktionsschritt ist nicht ganz sauber:

[mm] $x^{n+1} [/mm] \ = \ [mm] x^n*x [/mm] \ [mm] \blue{\ge} [/mm] \ [mm] x^n [/mm] * [mm] \blue{1} [/mm] \ = \ [mm] x^n [/mm] \ [mm] \red{\ge} [/mm] \ [mm] \red{x}$ [/mm]

[mm] $\blue{\ge}$ [/mm]  :  wegen der Voraussetzung $x \ > \ 1$

[mm] $\red{\ge}$ [/mm]  :  Induktionsvoraussetzung [mm] $x^n [/mm] \ [mm] \ge [/mm] \ x$


Gruß
Loddar


Bezug
                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 So 04.12.2005
Autor: Angie

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]