matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUngl.beweis mit Axiomen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Ungl.beweis mit Axiomen
Ungl.beweis mit Axiomen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungl.beweis mit Axiomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Do 21.10.2004
Autor: renguard

Was sagt ihr dazu ?? Ist das so OK???

Aufgabe: Zeigen sie:

Für x,y [mm] \in \IR [/mm] mit -1<x<y gilt  [mm] \bruch{x}{1+x} [/mm] <  [mm] \bruch{y}{1+y} [/mm]

Meine Lösung:

[mm] \bruch{x}{1+x} [/mm] <  [mm] \bruch{y}{1+y} [/mm]

= x (1+y) < y (1+x)

= x+xy <y+xy Monotonie bezüglich Adition

[mm] \Rightarrow [/mm] x<y



        
Bezug
Ungl.beweis mit Axiomen: fast richtig
Status: (Antwort) fertig Status 
Datum: 23:21 Do 21.10.2004
Autor: Marc

Hallo renguard,

> Aufgabe: Zeigen sie:
>
> Für x,y [mm]\in \IR[/mm] mit -1<x<y gilt  [mm]\bruch{x}{1+x}[/mm] <  
> [mm]\bruch{y}{1+y} [/mm]
>  
> Meine Lösung:
>  
> [mm]\bruch{x}{1+x}[/mm] <  [mm]\bruch{y}{1+y}[/mm]
>
> = x (1+y) < y (1+x)

Hier müßte statt des Gleichheitszeichens ein [mm] $\Leftarrow$ [/mm] hin, siehe unten.
Und da es hier ja darum geht, den Gebrauch der Voraussetzungen zu lernen, fehlt hier der Hinweis, dass die Multiplikation mit (1+y) und (1+x) unbedenklich ist, da (1+y)>0 und (1+x)>0 wegen -1<x<y.

> = x+xy <y+xy Monotonie bezüglich Adition

Hier auch [mm] $\Leftarrow$ [/mm] statt =.
  

> [mm]\Rightarrow[/mm] x<y

Das ist nun eine Folgerung in genau die falsche Richtung.

Du mußt ja (u.a) aus x<y folgern, dass [mm]\bruch{x}{1+x}< \bruch{y}{1+y}[/mm] gilt.

Ich schreibe nochmal alles auf:

x<y  (Voraussetzung)
[mm] $\Rightarrow$ [/mm] x+xy<y+xy (Monotonie bezüglich Addition)
[mm] $\Rightarrow$ [/mm] x(1+y)<y(1+x)   | [mm] $*\bruch{1}{1+y}$ [/mm] und [mm] $*\bruch{1}{1+x}$ [/mm] (beide Faktoren sind positiv wegen x>-1 und y>-1)
[mm] $\Rightarrow$ $\bruch{x}{1+x}<\bruch{y}{1+y}$ $\Box$ [/mm]

Viele Grüße,
Marc


Bezug
                
Bezug
Ungl.beweis mit Axiomen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:06 Fr 22.10.2004
Autor: renguard

Danke für deine hilfe

Ich glaub ich muss mir das noch mal in ruhe anschauen.

Mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]