matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUnendliche Summe konvergiert gegen 1
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Unendliche Summe konvergiert gegen 1
Unendliche Summe konvergiert gegen 1 < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unendliche Summe konvergiert gegen 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Do 27.05.2004
Autor: baddi

Blatt 5 Aufgabe 3 (i)
ZZ.: [m] \summe_{k=1}^{\infty} \bruch{1}{k(k+1)} [/m] konvergiert gegen 1.
Ok. Klar. Das ist bei scharfem Hinsehen gleich klar.
[m] ( \bruch{1}{1(1+1)} ,\bruch{1}{2(2+1)} ,\bruch{1}{3(3+1)} , ... ) [/m]
=
[m] ( \bruch{1}{2} ,\bruch{1}{6} ,\bruch{1}{12} , ... ) [/m]
Man sieht die Folge wächst immer. Und man sieht das die neuen Elemente immer > 0 sind.
Aber wie kann man sagen, dass die 1 nicht überschritten wird ?

Jemand hat mir gesagt ich soll nach:
Majoranten Kriteriom, Minoranten Kriteriom, Leibniz Kriterium, Quotienten Kriterium
suchen... werd ich tun.

Gefunden Majorantenkriterium:
http://www.matheboard.de/lexikon/index.php/Majorantenkriterium
Aber ich weiss nicht wie und ob ich das hier anwenden kann.


        
Bezug
Unendliche Summe konvergiert gegen 1: Tip
Status: (Antwort) fertig Status 
Datum: 12:50 Do 27.05.2004
Autor: GrafZahl


> Blatt 5 Aufgabe 3 (i)
>  ZZ.: [m]\summe_{k=1}^{\infty} \bruch{1}{k(k+1)} [/m] konvergiert
> gegen 1.
>  Ok. Klar. Das ist bei scharfem Hinsehen gleich klar.

Gewiß nicht!

>  [m]( \bruch{1}{1(1+1)} ,\bruch{1}{2(2+1)} ,\bruch{1}{3(3+1)} , ... ) [/m]
>  
> =
>  [m]( \bruch{1}{2} ,\bruch{1}{6} ,\bruch{1}{12} , ... ) [/m]
>  Man
> sieht die Folge wächst immer. Und man sieht das die neuen
> Elemente immer > 0 sind.

Diese Eigenschaft haben sehr, sehr, sehr viele Folgen, die nicht gegen 1 konvergieren

>  Aber wie kann man sagen, dass die 0 nicht überschritten
> wird ?
>  
>  

Guck mal:

[mm] \bruch{1}{k(k+1)}= \bruch{1+k-k}{k(k+1)} = \bruch{1+k}{k(k+1)}-\bruch{k}{k(k+1)}...[/mm]

Und was kommt jetzt?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]