matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK 60: AnalysisUneigentliches Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "VK 60: Analysis" - Uneigentliches Integral
Uneigentliches Integral < VK 60: Ana < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:41 Mo 30.05.2016
Autor: Lars.P

Aufgabe
Mit Hilfe der Aussagen des Majorantenkriterium und Minorantenkriterium für Integrale sollen Sie entscheiden über die Konvergenz folgender uneigentlicher Integrale.
a) [mm] \integral_{0}^{\infty}{e^{-x^{2}} dx} [/mm]
b) [mm] \integral_{0}^{1}{\bruch{cos(x)}{x} dx} [/mm]
c) [mm] \integral_{2}^{\infty}{\bruch{1}{log(x)} dx} [/mm]

a) ich habe [mm] e^{-x^{2}} \le [/mm] e^_{-x} gewählt.
und dann [mm] \integral_{0}^{\infty}{e^{-x} dx} [/mm] betrachtet.

[mm] =\limes_{n\rightarrow\infty}\integral_{0}^{n}{e^{-x} dx}= \limes_{n\rightarrow\infty}[-e^{-x}]_{0}^{n}= \limes_{n\rightarrow\infty}-e^{-b}+e^{0}=1 [/mm]
deshalb ist [mm] \integral_{0}^{\infty}{e^{-x^{2}} dx} [/mm] konvergent.

b) hab ich versucht nach mit [mm] \bruch{cos(x)}{x}\le \bruch{1}{x} [/mm] abzuschätzen hatte dann aber Probleme dann mit dem einsetzten der ,,0''.
Hab dann überlegt nach unten abzuschätzen mit [mm] cos(x)\le\bruch{cos(x)}{x}. [/mm] Dieser weg brachte mir nur die aussage dass cos(x) konvergent ist. Aber daraus kann ich ja nichts folgen.

c)
abschätzung nach oben [mm] \bruch{1}{log(x)}\le\bruch{1}{x}. [/mm]

[mm] \integral_{2}^{\infty}{\bruch{1}{x} dx}=\limes_{n\rightarrow\infty}\integral_{2}^{n}{\bruch{1}{x} dx}= \limes_{n\rightarrow\infty} [ln(x)]_{2}^{n}=ln(n)-ln(2)=\infty [/mm]
also divergent


        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mo 30.05.2016
Autor: fred97


> Mit Hilfe der Aussagen des Majorantenkriterium und
> Minorantenkriterium für Integrale sollen Sie entscheiden
> über die Konvergenz folgender uneigentlicher Integrale.
>  a) [mm]\integral_{0}^{\infty}{e^{-x^{2}} dx}[/mm]
>  b)
> [mm]\integral_{0}^{1}{\bruch{cos(x)}{x} dx}[/mm]
>  c)
> [mm]\integral_{2}^{\infty}{\bruch{1}{log(x)} dx}[/mm]
>  a) ich habe
> [mm]e^{-x^{2}} \le[/mm] e^_{-x} gewählt.
>  und dann [mm]\integral_{0}^{\infty}{e^{-x} dx}[/mm] betrachtet.
>  
> [mm]=\limes_{n\rightarrow\infty}\integral_{0}^{n}{e^{-x} dx}= \limes_{n\rightarrow\infty}[-e^{-x}]_{0}^{n}= \limes_{n\rightarrow\infty}-e^{-b}+e^{0}=1[/mm]
> deshalb ist [mm]\integral_{0}^{\infty}{e^{-x^{2}} dx}[/mm]
> konvergent.
>  




O.K.



> b) hab ich versucht nach mit [mm]\bruch{cos(x)}{x}\le \bruch{1}{x}[/mm]
> abzuschätzen hatte dann aber Probleme dann mit dem
> einsetzten der ,,0''.
> Hab dann überlegt nach unten abzuschätzen mit
> [mm]cos(x)\le\bruch{cos(x)}{x}.[/mm] Dieser weg brachte mir nur die
> aussage dass cos(x) konvergent ist. Aber daraus kann ich ja
> nichts folgen.

cos (x) [mm] \ge [/mm] cos (1) für x zwischen 0 und 1.



>  
> c)
> abschätzung nach oben [mm]\bruch{1}{log(x)}\le\bruch{1}{x}.[/mm]

wo hast du das denn her ? stimmen tut nicht.

fred

>  
> [mm]\integral_{2}^{\infty}{\bruch{1}{x} dx}=\limes_{n\rightarrow\infty}\integral_{2}^{n}{\bruch{1}{x} dx}= \limes_{n\rightarrow\infty} [ln(x)]_{2}^{n}=ln(n)-ln(2)=\infty[/mm]
> also divergent
>  


Bezug
                
Bezug
Uneigentliches Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:02 Mo 30.05.2016
Autor: Lars.P

Bei $ [mm] \bruch{1}{log(x)}\le\bruch{1}{x}. [/mm] $ habe ich [mm] \le [/mm] anstatt [mm] \ge [/mm] geschrieben. Da habe ich mich vertan.
es Müsste
[mm] \bruch{1}{log(x)}\ge\bruch{1}{x} [/mm] sein sonst würde ja meine Folgerung auch kein Sinn ergeben. wäre ja das Minorantenkriterium.

Bei b)  versteh ich deine Aussage nicht. Meinst du jetzt [mm] \bruch{cos(x)}{x}\ge [/mm] cos(x) oder meinst du [mm] cos(x)\ge\bruch{cos(x)}{x}. [/mm]


Bezug
                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mo 30.05.2016
Autor: fred97


> Bei [mm]\bruch{1}{log(x)}\le\bruch{1}{x}.[/mm] habe ich [mm]\le[/mm] anstatt
> [mm]\ge[/mm] geschrieben. Da habe ich mich vertan.
> es Müsste
> [mm]\bruch{1}{log(x)}\ge\bruch{1}{x}[/mm] sein sonst würde ja meine
> Folgerung auch kein Sinn ergeben. wäre ja das
> Minorantenkriterium.

dann ist es o.k.


>  
> Bei b)  versteh ich deine Aussage nicht. Meinst du jetzt
> [mm]\bruch{cos(x)}{x}\ge[/mm] cos(x) oder meinst du
> [mm]cos(x)\ge\bruch{cos(x)}{x}.[/mm]
>  

multipliziere die von mir angegebene Ungleichung mit 1/x .....


fred


Bezug
                                
Bezug
Uneigentliches Integral: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:33 Mo 30.05.2016
Autor: Lars.P

das wäre dann ja [mm] \bruch{cos(x)}{x}\ge \bruch{cos(1)}{x}. [/mm]
wenn ich danach geh würde ich ja [mm] \integral_{0}^{1}{\bruch{cos(1)}{x} dx}betrachten. [/mm] Ich würde als erstes [mm] cos(1)\integral_{0}^{1}{\bruch{1}{x} dx} [/mm] machen und dass würde ja zu [mm] cos(1)*\limes_{n\rightarrow 1}\integral_{0}^{n}{\bruch{1}{x} dx}=cos(1)\limes_{n\rightarrow 1}[ln(x)]_{0}^{n}= cos(1)*\limes_{n\rightarrow 1}ln(n)-ln(0)= [/mm] dann hätte ich dort ein problem da Ln(0) nicht definiert ist.


Bezug
                                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mo 30.05.2016
Autor: Stala

Darum musst du ja auch nicht den Grenzwert gegen 1, sondern den gegen 0 betrachten.
Da strebt der Logarithmus nämlich ins Unendliche...

Bezug
                                                
Bezug
Uneigentliches Integral: rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:20 Mo 30.05.2016
Autor: Lars.P

Also: $ [mm] cos(1)\cdot{}\limes_{n\rightarrow 0}\integral_{n}^{1}{\bruch{1}{x} dx}=cos(1)\limes_{n\rightarrow 0}[ln(x)]_{n}^{1}= cos(1)\cdot{}\limes_{n\rightarrow 0}ln(1)-ln(n)= \infty$ [/mm] und somit wäre es divergent


Bezug
                                                        
Bezug
Uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Mo 30.05.2016
Autor: fred97


>  Also: [mm]cos(1)\cdot{}\limes_{n\rightarrow 0}\integral_{n}^{1}{\bruch{1}{x} dx}=cos(1)\limes_{n\rightarrow 0}[ln(x)]_{n}^{1}= cos(1)\cdot{}\limes_{n\rightarrow 0}ln(1)-ln(n)= \infty[/mm]
> und somit wäre es divergent

so ist es

fred


>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]