matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationUnbestimmtes Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Unbestimmtes Integral
Unbestimmtes Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Lösungsweg unklar
Status: (Frage) beantwortet Status 
Datum: 13:13 Fr 08.01.2010
Autor: denker77

Aufgabe
[mm] \integral_{}^{}{f(x) 2x+2/x^{2}+x+1dx} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie ist der genaue Lösungsweg?

Was ich bisher weiß ist, dass ich zunächst aus dem Nenner die ersten beiden Ableitungen in den Zähler schreibe, dann habe ich zwei Integrale der Form f'(x) / x²+x+1 und ein Integral f''(x)/x²+x+1. Wobei f(x) der Nenner wäre.

dann kommt für das erste integral ln(x²+x+1) raus, dann komme ich nicht mehr weiter.



Dateianhänge:
Anhang Nr. 1 (Typ: docx) [nicht öffentlich]
        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 08.01.2010
Autor: schachuzipus

Hallo denker77 und ganz herzlich [willkommenmr],

> [mm]\integral_{}^{}{f(x) 2x+2/x^{2}+x+1dx}[/mm]

Da steht Kauderwelsch unter dem Integral. Was hat zum einen das f(x) da verloren? Und wieso setzt du keine Klammern, wenn du den Formeleditor schon nicht benutzt.

Schließlich gilt in Europa immer noch Punkt- vor Strichrechnung!

Nun, gemeint ist wohl eher [mm] $\int{\frac{2x+2}{x^2+x+1} \ dx}$ [/mm]


>  Ich habe diese
> Frage in keinem Forum auf anderen Internetseiten gestellt.
>  
> Wie ist der genaue Lösungsweg?

Das steht doch im Anhang ...

Zunächst kannst du schreiben [mm] $\int{\frac{2x+2}{x^2+x+1} \ dx}=\int{\frac{(2x+1)+1}{x^2+x+1} \ dx}=\int{\frac{2x+1}{x^2+x+1} \ dx} [/mm] \ + \ [mm] \int{\frac{1}{x^2+x+1} \ dx}$ [/mm] da Integrale additiv sind ...

Nun ist das erste Integral ein logarithmisches, wo im Zähler die Ableitung des Nenners steht. Es ist also von der Bauart [mm] $\int{\frac{f'(x)}{f(x)} \ dx}$. [/mm]

Das hat bekanntlich als Stammfunktion [mm] $\ln(|f(x)|)+C$ [/mm]

Das kannst du nachrechnen (auch im allg. Fall), indem du den Nenner substituierst. Also hier [mm] $u=u(x):=x^2+x+1$ [/mm] (bzw. allg. $u=u(x):=f(x)$)

Das zweite Integral ist ein wenig schwieriger, aber nicht so schlimm, wenn du dich daran erinnerst, was [mm] $\int{\frac{1}{z^2+1} \ dz}$ [/mm] ist.

Das kennst du sicher: [mm] $\arctan(z)+C$ [/mm]

Von daher betrachte mal [mm] $\int{\frac{1}{x^2+x+1} \ dx}$ [/mm] und mache eine quadratische Ergänzung im Nenner:

[mm] $=\int{\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}} \ dx}=\int{\frac{1}{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2} \ dx}$ [/mm]

Nun klammere noch im Nenner [mm] $\left(\frac{\sqrt{3}}{2}\right)^2$ [/mm] aus und du wirst auf eine passende Substitution kommen, um das auf die Form [mm] $K\cdot{}\int{\frac{1}{z^2+1} \ dz}$ [/mm] zu bringen.

>  
> Was ich bisher weiß ist, dass ich zunächst aus dem Nenner
> die ersten beiden Ableitungen in den Zähler schreibe, dann
> habe ich zwei Integrale der Form f'(x) / x²+x+1 und ein
> Integral f''(x)/x²+x+1. Wobei f(x) der Nenner wäre.
>  
> dann kommt für das erste integral ln(x²+x+1) raus, dann
> komme ich nicht mehr weiter.
>  
>  


Gruß

schachuzipus

Bezug
                
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:58 Fr 08.01.2010
Autor: denker77

Vielen Dank für die Antwort, so kann ich das ganz gut nachvollziehen.
Mit dem Editor muss ich mich noch anfreunden ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]