matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikUnabhaengigkeit von ZV'n
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Unabhaengigkeit von ZV'n
Unabhaengigkeit von ZV'n < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhaengigkeit von ZV'n: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:58 Mo 23.05.2005
Autor: popdog

Hallo,

wir haben Probleme, folgende Aufgabe zu loesen:

Es seien X und Y zwei Zufallsvaribalen auf [mm] (\Omega, [/mm] P) mit [mm] |X(\Omega)| [/mm] = n und [mm] |Y(\omega)| [/mm] = m. Man zeige, dass X und Y genau dann unabhaengig sind, wenn

[mm] E(X^i \cdot Y^j) [/mm] = [mm] E(X^i) \cdot E(Y^j) [/mm]

fuer alle i = 0,1,...,n - 1 und j = 0,1,...,m - 1



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unabhaengigkeit von ZV'n: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Mo 23.05.2005
Autor: Stefan

Hallo!

Was genau ist hier mit [mm] $X^i$ [/mm] gemeint?

Etwa die Zufallsvariable  [mm] $1_{\{X=i\}}$, [/mm] oder wie habe ich das zu verstehen? [keineahnung] [kopfkratz]

Viele Grüße
Stefan

Bezug
                
Bezug
Unabhaengigkeit von ZV'n: keine Ahnung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Mo 23.05.2005
Autor: popdog

Hallo,

ich habe leider keine Ahnung, wie das [mm] X^i [/mm] gemient ist.

Unser Tutor wusste das auch nicht.

Bezug
        
Bezug
Unabhaengigkeit von ZV'n: Versuch einer Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 23.05.2005
Autor: Brigitte

Hallo popdog,
  

> wir haben Probleme, folgende Aufgabe zu loesen:
>  
> Es seien X und Y zwei Zufallsvaribalen auf [mm](\Omega,[/mm] P) mit
> [mm]|X(\Omega)|[/mm] = n und [mm]|Y(\omega)|[/mm] = m. Man zeige, dass X und
> Y genau dann unabhaengig sind, wenn
>  
> [mm]E(X^i \cdot Y^j)[/mm] = [mm]E(X^i) \cdot E(Y^j)[/mm]
>  
> fuer alle i = 0,1,...,n - 1 und j = 0,1,...,m - 1

Also zunächst mal interpretiere ich [mm] $X^i$ [/mm] im naheliegendsten Sinne, nämlich als [mm] $X\cdot\ldots\cdot [/mm] X$ mit $i$ Faktoren. Für die Richtung von der Unabhängigkeit zur angegebenen Gleichung schlage ich folgenden Lösungsweg vor:

Aus [mm] $|X(\Omega)|=n$ [/mm] kann man wohl folgern, dass die Zufallsvariable $X$ nur $n$ verschiedene Werte annehmen kann, sagen wir die Werte [mm] $x_1,\ldots,x_n$. [/mm] In diesem Fall bestimmt man den Erwartungswert gemäß

[mm] $E(X)=\sum\limits_{i=1}^n x_i\cdot P(X=x_i).$ [/mm]

Für $Y$ geht das analog. Für [mm] $X^i \cdot Y^j$ [/mm] gilt

[mm] $E(X^i \cdot Y^j)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m x_i^i\cdot y_j^j\cdot P(X=x_i,Y=y_j)$ [/mm]

[mm] $=\sum\limits_{i=1}^n\sum\limits_{j=1}^m x_i^i\cdot y_j^j\cdot P(X=x_i)\cdot P(Y=y_j)$ [/mm]

[mm] $=\sum\limits_{i=1}^nx_i^i\cdot P(X=x_i)\cdot \sum\limits_{j=1}^m y_j^j\cdot P(Y=y_j)$ [/mm]

[mm] $=E(X^i)E(Y^j).$ [/mm]

Für die andere Richtung fehlt mir noch die entscheidende Idee. Aber vielleicht magst Du ja auch noch mal selbst drüber nachdenken.

Viele Grüße
Brigitte

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]