matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikUnabhängigkeit Zufallsvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Unabhängigkeit Zufallsvektor
Unabhängigkeit Zufallsvektor < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit Zufallsvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Do 21.02.2013
Autor: logipech

Hi,

gegeben zwei Zufallsvektoren X,Y, die unabhängig sind:
[mm] X\colon \Omega \to S_X \quad, Y\colon \Omega \to S_Y[/mm]
[mm] P(X\in B_X, Y\in B_Y) = P(X\in B_X)\cdot P(Y\in B_Y). [/mm]
Jetzt sind aber X und Y selbst schon Zufallsvektoren, d.h. z.B.
[mm] X=(X_1,X_2), Y=(Y_1,Y_2) [/mm]. Heißt das dann für die Unabhängigkeit
[mm] P(X_1\in B_{X,1}, X_2 \in B_{X,2}, Y_1 \in B_{Y,1}, Y_2 \in B_{Y,2}) = P(X_1 \in B_{X,1})P(X_2 \in B_{X,2})P(Y_1 \in B_{Y,1})P(Y_2 \in B_{Y,2}) [/mm]?
Das würde dann ja nichts anderes bedeuten als X,Y kann auch als eine Folge [mm]X_1,X_2,Y_1,Y_2[/mm] von Zufallsvariablen aufgefasst werden, welche paarweise unabhängig sind.
Mit anderen Worten: Die Unabhängigkeit der Zufallsvektoren überträgt sich auf die Koordinatenfunktionen [mm]X_i,Y_i[/mm].
Habe ich das richtig verstanden?

_____________
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unabhängigkeit Zufallsvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Do 21.02.2013
Autor: luis52

Moin logipech,

[willkommenmr]


> Mit anderen Worten: Die Unabhängigkeit der Zufallsvektoren
> überträgt sich auf die Koordinatenfunktionen [mm]X_i,Y_i[/mm].
>  Habe ich das richtig verstanden?
>  


Ja, so ist es.

vg luis

Bezug
                
Bezug
Unabhängigkeit Zufallsvektor: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Do 21.02.2013
Autor: logipech

Danke Dir!

lg logipech

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]