matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieUnabhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Unabhängigkeit
Unabhängigkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 So 06.05.2012
Autor: Ana-Lena

Aufgabe
Wir betrachten Zufallsexperimente mit Ereignisraum  [mm] $\Omega [/mm] = [mm] \{0,1\}^2$. [/mm]
Entscheiden Sie fur jedes in der Tabelle aufgefuhrte Wahrscheinlichkeisma [mm] $P_a$, $P_b$, $P_c$ [/mm] auf , ob es einer unabhängigen Wiederholung desselben oder (zumindest) zweier verschiedener Zufallsexperimente mit Ereignisraum  [mm] $\Omega_0 [/mm] = [mm] \{0,1\}$ [/mm] entspricht. Beachten Sie, dass ein Ma nicht unbedingt einem Produkt entsprechen muss. Uberlegen Sie sich eine Methode zum Nachweis, dass bzw. dass es nicht einem Produkt entspricht. Wenn ein Produkt von Zufallsexperimenten vorliegt, dann bestimmen Sie die zwei unabhangigen Experimente.

[mm] \omega [/mm] : | (0,0) | (0,1) | (1,0) | (1,1)
[mm] P_a(\{\omega\})| [/mm] 0,04 | 0,16 | 0,16 | 0,64
[mm] P_b(\{\omega\})| [/mm] 0,24 | 0,26 | 0,16 | 0,34
[mm] P_c(\{\omega\})| [/mm] 0,12 | 0,08 | 0,48 | 0,32



Hi,

in der folgenden Aufgabe habe ich verstanden, dass ich davon ausgehen soll, dass die Zufallsexperimente unabhängig sind, also laut Def.

[mm] P(\{(\omega_i,\omega_j)\}) [/mm] = [mm] P_0(\{\omega_i\}) P_0(\{\omega_j\}) [/mm]

bei Wdh von demselben Experiment und bei verschiedenen:  

[mm] P(\{(\omega_i,\omega_j)\}) [/mm] = [mm] P_0(\{\omega_i\}) P_1(\{\omega_j\}) [/mm]

Der Satz: "Beachten Sie, dass ein Ma nicht unbedingt einem Produkt entsprechen muss." sagt mir garnichts.... Was ist damit gemeint?

[mm] P_a [/mm] und [mm] P_c [/mm] sind klar...

Zu [mm] P_b [/mm] habe ich keine Idee... Ich hab schon Gleichungen zusammengestellt... Auch [mm] P_{ges} [/mm] = [mm] P_1 [/mm] + [mm] P_2 [/mm] habe ich betrachtet... aber das führt zu einem Widerspruch... Kann mir jemand helfen?

Danke und liebe Grüße,
Ana-Lena

        
Bezug
Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mo 07.05.2012
Autor: tobit09

Hallo Ana-Lena,


> in der folgenden Aufgabe habe ich verstanden, dass ich
> davon ausgehen soll, dass die Zufallsexperimente
> unabhängig sind, also laut Def.

Ob dem jeweils so ist, sollst du gerade untersuchen.

> [mm]P(\{(\omega_i,\omega_j)\})[/mm] = [mm]P_0(\{\omega_i\}) P_0(\{\omega_j\})[/mm]
>  
> bei Wdh von demselben Experiment und bei verschiedenen:  
>
> [mm]P(\{(\omega_i,\omega_j)\})[/mm] = [mm]P_0(\{\omega_i\}) P_1(\{\omega_j\})[/mm]

Ja, wenn P denn der unabhängigen Durchführung zweier Zufallsexperimente auf [mm] $\Omega_0=\{0,1\}$ [/mm] mit Wahrscheinlichkeitsmaßen [mm] $P_0$ [/mm] und [mm] $P_1$ [/mm] entspricht.

> Der Satz: "Beachten Sie, dass ein Ma nicht unbedingt einem
> Produkt entsprechen muss." sagt mir garnichts.... Was ist
> damit gemeint?

Nicht jedes Wahrscheinlichkeitsmaß auf [mm] $\Omega=\{0,1\}^2$ [/mm] beschreibt die unabhängige Durchführung zweier Zufallsexperimente. Ein Produkt zweier Wahrscheinlichkeitsmaße auf [mm] $\Omega_0$ [/mm] würde dagegen die unabhängige Durchführung zweier Zufallsexperimente beschreiben.


> [mm]P_a[/mm] und [mm]P_c[/mm] sind klar...
>  
> Zu [mm]P_b[/mm] habe ich keine Idee... Ich hab schon Gleichungen
> zusammengestellt...

Nämlich welche?

> Auch [mm]P_{ges}[/mm] = [mm]P_1[/mm] + [mm]P_2[/mm] habe ich
> betrachtet... aber das führt zu einem Widerspruch...

Das ergibt keinen Sinn. Die Summe zweier Wahrscheinlichkeitsmaße ist gar kein Wahrscheinlichkeitsmaß.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]